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1. Introduction

The gauge/gravity correspondence [1, 2] has provided us with a very powerful tool to

explore the dynamics of gauge theories at strong coupling. In its original formulation the

correspondence is a duality between the AdS5 × S5 background of type IIB supergravity

and N = 4, d = 4 super Yang-Mills theory, in which all fields transform in the adjoint

representation of the gauge group. Clearly, to extend this duality to systems closer to the
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particle physics phenomenology we should be able to add matter fields transforming in the

fundamental representation of the gauge group. This is equivalent to adding open string

degrees of freedom to the supergravity side of the correspondence.

It was originally proposed in [3] that such an open string sector can be obtained by

adding certain D-branes to the supergravity background. If the number Nf of such flavor

branes is small compared with the number Nc of colors, we can treat the flavor branes

as probes in the background created by the color branes. This is the so-called quenched

approximation, which corresponds, in the field theory side, to suppressing quark loops by

factors 1/Nc in the ’t Hooft large Nc expansion. The fluctuation modes of the probe D-

brane in the supergravity background provide a holographic description of the flavor sector

of the gauge theory and one can extract the corresponding meson spectrum by analyzing

the normalizable fluctuations of the probe [4] (for a review and a list of references, see [5]).

When the number Nf of flavors is of the same order as the number Nc of colors,

the backreaction of the flavor branes on the metric can no longer be neglected. On the

field theory side the inclusion of the backreaction is equivalent to considering the so-called

Veneziano limit, in which Nc and Nf are large and their ratio Nf/Nc is fixed. In this limit

quark loops are no longer suppressed. In the last few years there have been several attempts

to construct supergravity duals of these unquenched systems, both for four-dimensional [6]

and three-dimensional gauge theories [7], by using solutions of supergravity generated by

localized intersections of branes.

Recently, a different approach has been proposed in ref. [8]. Instead of solving the

equations of pure supergravity, the authors of [8] considered the full gravity plus (flavor)

branes system. The action of such a system contains the Dirac-Born-Infeld action of the

flavor branes, which governs their worldvolume dynamics and their coupling to the different

supergravity fields. Notice that this is consistent with the fact that color branes undergo a

geometric transition and are converted into fluxes, whereas, on the contrary, flavor branes

are still present after the geometric transition. Thus, from a conceptual point of view,

color and flavor branes are not equivalent and, therefore, should be treated differently. By

considering a suitable continuous distribution of flavor branes the authors of [8] were able to

find a set of BPS equations and to solve them numerically (see [9] for a similar approach in

the context of non-critical string theory). The resulting solution is the flavored backreacted

version of the background found in [10] and proposed in [11] as the supergravity dual of

N = 1 super Yang-Mills theory in four dimensions. Further developments of this approach

can be found in refs. [12]–[17]. In this paper we will apply this circle of ideas to the case of

N = 1 gauge theories in 2+1 dimensions. The corresponding unflavored supergravity dual

was found in ref. [18], and it was interpreted as being generated by D5-branes wrapped on

a three-cycle of a manifold of G2 holonomy in [19] (see also [20]–[23]).

The low number of supersymmetries preserved by the solution of [18] (just two real

supercharges) is a nice feature and makes it appealing also from the perspective of its dual

field theory. As pointed out in ref. [19], this theory reduces in the IR to 2+1 dimensional

N = 1 supersymmetric U(Nc)Yang-Mills theory with a level k Chern-Simons interaction.

Such theory coupled to an adjoint massive scalar field should arise on the domain walls

separating the different vacua of pure N = 1 super-Yang-Mills in 3+1 dimensions. For
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k 6= 0 the theory has a mass gap, at least classically, with mass of order g2
YM|k|. This

implies that for |k| ≫ 1, i.e. when we can trust the classical result, there are no Goldstone

fermions and, therefore, supersymmetry is unbroken. Actually, the Witten index for such

a theory was computed in [24], where it has been shown that for k ≥ Nc/2 supersymmetry

is unbroken, while it is broken for k < Nc/2. In the borderline case (k = Nc/2) there is

just one supersymmetric vacuum. Being the supergravity solution of [18] supersymmetric

and without parameters that could label different vacua, it is reasonable to expect that the

dual field theory is the one describing the k = Nc/2 case. It was shown in ref. [19] that

this is actually the case.

We will start our analysis by generalizing the ansatz of [18] for the unflavored solutions.

This generalization will allow us to find a new class of solutions in which, in the UV, the

metric becomes asymptotically the direct product of a G2 cone and a three-dimensional

Minkowski space, while the dilaton becomes constant. This is in contrast to the background

of [18], in which the dilaton grows linearly with the holographic coordinate. For this

generalized ansatz we will be able to find a system of first-order BPS equations which ensure

that our solutions preserve two supersymmetries. We will perform a careful analysis of the

regularity conditions to be imposed on the functions of our ansatz, which will allow us to fix

some parameters of our solutions and to determine the appropriate initial conditions needed

to solve the BPS differential equations. The new solutions, which are found numerically,

can be naturally interpreted as non-near horizon versions of the one of [18].

After completing the analysis of the unflavored backgrounds, we will study the addition

of flavor D5-branes. First of all, we will use kappa symmetry [25] to determine a continuous

family of embeddings of probes that preserve all the supersymmetries of the background

and which can be used as flavor branes for massless quarks. These embeddings have the

topology of a cylinder and are very similar to the ones found in [26] (and used in [8]) in the

case of the supergravity dual of N = 1 gauge theories in four dimensions. It turns out that

the embeddings we will find can be straightforwardly smeared in their transverse directions

without breaking supersymmetry. Moreover, one can combine them in a way compatible

with our generalized metric ansatz. We will use this fact to compute the backreacted

geometry.

As the flavor branes act as a source of the RR forms in the backreacted solution, we

will have to modify the ansatz of the RR three-form to include the violation of its Bianchi

identity in a very precise form. After this modification of the ansatz, we will look again

at the BPS equations that enforce supersymmetry and we will get a system of differential

equations that generalizes the one found for the unflavored system. These equations depend

now both onNc andNf and can be solved by imposing regularity conditions that are similar

to the ones used for the unflavored case. By solving the BPS equations for different numbers

of colors and flavors we will discover that the system behaves differently depending on

whetherNc is larger or smaller than 2Nf . The most interesting case occurs whenNc ≥ 2Nf .

In this regime the behavior of the solution is compatible with having an asymptotically free

gauge theory with dynamical massless quarks. We will confirm this result by computing,

from our solution, the beta function and the quark-antiquark potential energy. We will

get the expected linear confining potential and the dual description of the confining string
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breaking due to pair creation. On the contrary, when Nc < 2Nf the solution ceases to

exist beyond some value of the holographic coordinate. This behavior is compatible with

having a Landau pole in the UV.

This paper is organized as follows. In section 2 we will formulate our generalized ansatz

for the unflavored case. The corresponding BPS equations are obtained in appendix A. It

turns out that these equations admit a truncation, in which some functions of the ansatz

are fixed to some particular values and, as a consequence, the system of BPS equations

greatly simplifies. Due to this simplification we will first analyze this truncated system in

subsection 2.1. In subsection 2.2 we will consider the full system which, in general, presents

a better IR behavior. In this subsection we carefully examine the regularity conditions to

be imposed on the solutions of the BPS equations.

In section 3 we consider the addition of flavor branes. We first determine the kappa

symmetric cylinder embeddings and then we find the particular distribution of them that

preserves supersymmetry and is compatible with our metric ansatz. This distribution

dictates the modification of the ansatz of the RR three-form needed to encompass the

modification of the Bianchi identity induced by the flavor branes. The corresponding

BPS equations for this case are also found in appendix A while, in appendix B we verify

that, quite remarkably, the first-order equations derived from supersymmetry imply the

fulfillment of the second order equations of motion for the coupled gravity plus branes

theory. It turns out that the BPS system with flavor admits the same truncation as in the

Nf = 0 case. We study this truncated system in section 4. The full system for Nc ≥ 2Nf is

analyzed in section 5, whereas section 6 is devoted to the study of this same system when

Nc < 2Nf .

Finally, in section 7 we recapitulate our results and discuss some possible extensions

of our work.

2. Deforming the unflavored solution

Let us begin by describing in detail the ansatz that we will adopt for the unflavored

backgrounds we are interested in. As a particular case the family of our solutions will

include the one found originally in [18] and interpreted in [19] as a supergravity dual

of N = 1 super Yang Mills theory in 2+1 dimensions. More concretely, let σi and ωi

(i = 1, 2, 3) be two sets of SU(2) left-invariant one forms, obeying:

dσi = −1

2
ǫijk σ

j ∧ σk , dωi = −1

2
ǫijk ω

j ∧ ωk . (2.1)

The forms σi and ωi parameterize two three-spheres. In the geometries we will be dealing

with, these spheres are fibered by a one-form Ai. The corresponding ten-dimensional metric

of the type IIB theory in the Einstein frame is given by:

ds2 = e2f
[

dx2
1,2 + dr2 +

e2h

4
(σi)2 +

e2g

4
(ωi −Ai)2

]

, (2.2)

where dx2
1,2 is the Minkowski metric in 2+1 dimensions, r is a radial (holographic) co-

ordinate and f , g and h are functions of r. In addition, the one-form Ai will be taken
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as:

Ai =
1 + w(r)

2
σi , (2.3)

with w(r) being a new function of r. The backgrounds considered here are also endowed

with a non-trivial dilaton φ and an RR three-form F3, which we will take as:

F3

Nc
= −1

4
(ω1 −B1) ∧ (ω2 −B2) ∧ (ω3 −B3) +

1

4
F i ∧ (ωi −Bi) +H , (2.4)

where Bi is a new one-form and F i are the components of its field strength, given by:

F i = dBi +
1

2
ǫijkB

j ∧Bk . (2.5)

In (2.4) H is a three-form that is determined by imposing the Bianchi identity for F3,

namely:

dF3 = 0 . (2.6)

By using (2.1) one can easily check from the explicit expression written in (2.4) that, in

order to fulfill (2.6), the three-form H must satisfy the equation:

dH =
1

4
F i ∧ F i . (2.7)

In what follows we shall adopt the following ansatz for Bi:

Bi =
1 + γ(r)

2
σi , (2.8)

where γ(r) is a new function. After plugging the ansatz of Bi written in (2.8) into (2.5),

one gets the expression of F i in terms of γ(r), i.e.:

F i =
γ′

2
dr ∧ σi + γ2 − 1

8
ǫijk σ

j ∧ σk , (2.9)

where the prime denotes the derivative with respect to the radial variable r. Using this

result for F i in (2.7) one can easily determine the three-form H in terms of γ. Let us

parameterize H as:

H =
1

32

1

3!
H(r) ǫijk σ

i ∧ σj ∧ σk . (2.10)

Then, by solving (2.7) for H, one can verify that H(r) is the following function of the radial

variable:

H = 2γ3 − 6γ + 8κ , (2.11)

with κ being an integration constant.

In the particular case in which the function g is constant and the fibering functions

w and γ are equal our ansatz reduces to the one considered in refs. [18, 19]. Actually,

we will verify that the BPS equations fix, in this case, the constant value of g to be

e2g = Nc. Moreover, this type of solution is naturally obtained by considering a fivebrane

wrapped on a three-sphere in seven dimensional gauged supergravity. This three-sphere of

the seven dimensional solution is just the one parameterized by the σi’s, while Ai = Bi
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is the SU(2) gauge field of the gauged supergravity and H the corresponding three-form.

The expressions (2.2) and (2.4) for the metric and RR three-form of our ansatz are just the

ones that are obtained naturally upon uplifting the solution from seven to ten dimensions.

Notice thatNc characterizes the flux of the RR three-form and it corresponds to the number

of colors on the gauge theory side, whereas the constant κ of (2.11) is, in the analysis of [19],

related to the coefficient of the Chern-Simons term in the 2+1 dimensional gauge theory.

By requiring that our background preserves some fraction of supersymmetry we arrive

at a system of first-order BPS equations for the different functions of our ansatz. In its full

generality this analysis is rather involved and it is presented in detail in appendix A. Let

us mention here that the number of supersymmetries preserved by our solutions is equal

to two, which is the right amount of SUSY expected for an N = 1 gauge theory in 2+1

dimensions. Moreover, supersymmetry imposes the following relation between the dilaton

φ and the function f appearing in the metric (2.2):

φ = 4f . (2.12)

2.1 The truncated system

As mentioned above the equations imposed by supersymmetry on the functions of our

ansatz are obtained in appendix A. By inspecting these equations one can check that they

admit solutions in which the fibering functions w and γ vanish, as well as the integration

constant κ, namely:

w = γ = 0 , κ = 0 . (2.13)

By performing the truncation (2.13) the first-order BPS system simplifies drastically. Ac-

tually, one can verify that it reduces to the following three equations for φ = 4f , h and

g:

φ′ = Nc e
−g

[

e−2g − 3

4
e−2h

]

,

h′ =
e−2h

2

[

eg +Nc e
−g

]

,

g′ =

[

e−2h

4
− e−2g

] [

Nc e
−g − eg

]

. (2.14)

To integrate this system, let us consider first the possibility of having solutions with g

constant. It follows from the equation for g′ written in (2.14) that g must be such that:

e2g = Nc . (2.15)

Plugging this value of g in the second equation in (2.14) one easily shows that the equation

for h becomes:

h′ =
√

Nc e
−2h , (2.16)

which can be integrated immediately as:

e2h = 2
√

Nc r . (2.17)
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Using these values of g and h the dilaton can be readily obtained from the first equation

in (2.14), namely:

e2φ = e2φ0
e

2r√
Nc

r
3

4

, (2.18)

where φ0 is a constant. The solution given by eqs. (2.15), (2.17) and (2.18) was obtained

in [21] as the background generated by fivebranes wrapped on a three-cycle of a manifold

of G2 holonomy. The corresponding metric is singular at r = 0. Notice also that the

dilaton (2.18) grows linearly with the holographic coordinate for r → ∞, as it should for a

background created by fivebranes in the near-horizon limit.

In order to study the system (2.14) in general and find other classes of solutions, let

us define a new radial variable ρ as:

ρ ≡ e2h , (2.19)

and a new function F as:

F ≡ e2g . (2.20)

We will consider F as a function of ρ. From the equations for h′ and g′ written in (2.14)

we get the following equation for F (ρ):

dF

dρ
=

[

2 − F

2ρ

]

F −Nc

F +Nc
, (2.21)

while the equation for the dilaton is:

dφ

dρ
=

Nc

F (F +Nc)

[

1 − 3F

4ρ

]

. (2.22)

From the equation for h in the system (2.14) it is straightforward to verify that the jacobian

of the change of radial variable is:

dr

dρ
=

√
F

F +Nc
, (2.23)

and, thus, one can write the metric as:

ds2 = e
φ
2

[

dx2
1,2 +

F

(F +Nc)2
(dρ)2 +

ρ

4
(σi)2 +

F

4

(

ωi − σi

2

)2 ]

. (2.24)

By inspecting (2.21) we recognize our special solution (2.15)–(2.18) as the one that is

obtained by taking F = Nc in (2.21) and (2.22). Another case in which the BPS equations

can be solved analytically is when Nc = 0. Indeed, in this case the RR three-form vanishes,

the dilaton is constant and (2.21) becomes:

dF

dρ
+
F

2ρ
= 2 , (Nc = 0) . (2.25)

The general solution of (2.25) can be found easily:

F =
4

3
ρ+

c

ρ
1

2

, (Nc = 0) , (2.26)
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where c is an integration constant. Let us write the form of this solution in a more suitable

form. For this purpose it is convenient to perform a new change in the radial variable,

namely:

ρ =
1

3
τ2 , (2.27)

and to define the constant a, related to the integration constant c in (2.26) as c =

−4a3/9
√

3. In terms of these quantities the metric (2.24) becomes:

ds2 = e
φ∗
2

[

dx2
1,2 +

(dτ)2

1 − a3

τ3

+
τ2

12
(σi)2 +

τ2

9

(

1 − a3

τ3

)(

ωi − σi

2

)2 ]

, (2.28)

where φ∗ is the constant value of the dilaton. Notice that (2.28) is just the metric of the

direct product of a 2+1 Minkowski space and a manifold of G2 holonomy. This metric of

G2 holonomy is just the well-known Bryant-Salamon metric [27], which has the topology

of R
4 ×S3 and asymptotes to a G2 cone for large values of the radial coordinate τ . Notice

that τ ≥ a in (2.28) and as τ → a one of the two three-spheres shrinks to a point while

the other remains finite. When a = 0 this manifold is singular at the origin τ = 0. This

singularity is cured by switching on a non-zero value of the parameter a, in a way very

similar to that which happens to the resolved conifold.

Having obtained the previous solutions for near-horizon fivebranes and (resolved) G2

cones without branes, it is quite natural to look at solutions with RR three-form whose

metric becomes in the UV the direct product of 2+1 Minkowski space and a G2 cone. In

a sense these solutions would correspond to going beyond the near-horizon region of the

fivebrane background. In terms of the variables F and ρ it is clear that we are looking for

solutions such that:

F ∼ 4

3
ρ+ · · · , (ρ→ ∞) . (2.29)

Notice that, when (2.29) holds, 1 − 3F/4ρ ≈ 0 for ρ→ ∞ and, therefore, eq. (2.22) shows

that the dilaton is stabilized in the UV, i.e. φ → constant for large ρ, in contrast to what

happens in (2.18). Actually, one can show that for large ρ the solution of the differential

equation (2.21) that behaves as in (2.29) can be approximated as:

F =
4

3
ρ− 4Nc +

15N2
c

ρ
− 45N3

c

4

1

ρ2
+ · · · , (ρ→ ∞) . (2.30)

By plugging this expansion in the equation (2.22) for the dilaton, one gets the following

UV expansion:

dφ

dρ
=

27N2
c

16

1

ρ3
+

81N3
c

32

1

ρ4
+ · · · , (ρ→ ∞) , (2.31)

which can be integrated as:

φ = φ∞ − 27N2
c

32

1

ρ2
+ · · · , (ρ→ ∞) , (2.32)

where φ∞ is the UV value of the dilaton. For small ρ one gets two possible consistent

behaviors, namely F ∼ ρ−
1

2 , ρ
1

2 . Notice that in one case F diverges at small ρ, while in

– 8 –
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Figure 1: F and φ for two different values of the constant c0 of eqs. (2.33) and (2.34) (c0 = 5 and

10) and Nc = 1.

the other it remains finite. Actually, when F diverges at ρ → 0 one can show that F (ρ)

can be expanded in powers of
√
ρ as follows:

F =
c0√
ρ

+ 2Nc −
N2
c

c0

√
ρ+

(

4

3
+

2N3
c

c20

)

ρ+ · · · , (ρ→ 0) , (2.33)

where c0 is a non-zero constant that must be taken to be positive if we want to ensure that

F > 0. Plugging the expansion (2.33) into the right-hand side of (2.22), one can get the

IR expansion of the dilaton φ:

dφ

dρ
= − 3Nc

4c0
√
ρ

+
9N2

c

4c20
− 15N3

c

2c30

√
ρ+ · · · , (ρ→ 0) . (2.34)

Notice that φ is regular as ρ → 0, although dφ/dρ diverges. In figure 1 we have plotted

the numerical results for F (ρ) and φ(ρ) for two different values of the constant c0.

Let us now consider the case in which F is regular as ρ→ 0. Apart from the solution

in which F = Nc for all ρ, there are other solutions where F is not constant and can be

expanded near ρ ≈ 0 as:

F = b0
√
ρ− 2

(

2 +
b20
Nc

)

ρ+
b0(5b

2
0 + 12Nc)

N2
c

ρ
3

2 + · · · , (ρ→ 0) . (2.35)

Notice that in this case F vanishes at ρ → 0. By taking b0 > 0 one can make F positive

for small values of ρ. However, one can check by numerical integration that, after having a

maximum the function F (ρ) starts to decrease and becomes negative as ρ increases. Due

to this pathological behavior we will consider this solution as unphysical.

2.2 Analysis of the general system

Let us now come back to the general ansatz (2.2)–(2.11) and perform an analysis of this

system by using the new radial variable ρ and the function F defined in (2.19) and (2.20).

The corresponding BPS equations are written in appendix A. From eqs. (A.27) and (A.28)

– 9 –
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it is easy to verify that the equation that determines the function F (ρ) is given by:

dF

dρ
=
Aβ + Ã β̃

D β + D̃ β̃
, (2.36)

where the functions A(ρ), Ã(ρ), D(ρ) and D̃(ρ) are:

A =

[

2 − (1 − w2)
F

2ρ

] [

F −Nc

]

+Ncw (w − γ)
F

ρ
,

Ã = 2Nc (w − γ)

√

F

ρ
,

D = (1 − w2) (F +Nc) + 2Nc w (w − γ) ,

D̃ =
Nc

4
V

√

F

ρ
+Nc (w − γ)

√

ρ

F
− 2w

√

Fρ , (2.37)

with V being the following function of w, γ and κ:

V = (w − 3γ) (1 − w2) − 4w + 8κ . (2.38)

The quantities β and β̃ appearing in (2.36) characterize the dependence of the Killing

spinors on the holographic coordinate (see appendix A). They can be written in terms of

an angle α as β = cosα, β̃ = sinα. Alternatively, one can write tanα = Λ̃/Λ as in (A.25).

The explicit expressions of Λ and Λ̃ are given in (A.24). In terms of the variables ρ and F ,

they are:

Λ = ρ+
1 − w2

4
F +

Nc

4
(1 + w2 − 2wγ) − Nc ρ

3F
,

Λ̃ =
Nc

24
V

√

F

ρ
− w

√

ρF +
Nc

2
(w − γ)

√

ρ

F
. (2.39)

Similarly, the equations that determine the functions w(ρ) and γ(ρ) can be easily obtained

from (A.26) and (A.18). Let us write them as:

dw

dρ
=
Bβ + B̃β̃

Dβ + D̃β̃
,

dγ

dρ
=
Cβ + C̃β̃

Dβ + D̃β̃
, (2.40)

where D(ρ) and D̃(ρ) are the same as in (2.37) and the new functions B(ρ), B̃(ρ), C(ρ)

and C̃(ρ) are:

B =
2Nc

3

[

V

4ρ
− 3

w − γ

F

]

,

B̃ =
4

3

[ (

3 − 2Nc

F

)
√

ρ

F
− 3

4
(1 − w2)

√

F

ρ

]

,

C =
2

3

[

V

4ρ
F + 3(w − γ)

]

,

C̃ =
4

3

[
√

ρ

F
− 3

4
(1 + w2 − 2wγ)

√

F

ρ

]

. (2.41)
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Moreover, from (A.27) one easily gets that the jacobian for the change of the radial variable

is:
dr

dρ
=

√
F

Dβ + D̃β̃
. (2.42)

In terms of these quantities, the metric can be written as:

ds2 = e
φ
2

[

dx2
1,2 +

F
(

Dβ + D̃β̃
)2 (dρ)2 +

ρ

4
(σi)2 +

F

4

(

ωi −Ai
)2 ]

. (2.43)

Similarly, from (A.18) one can obtain the differential equation that determines the depen-

dence of the dilaton φ on the variable ρ, namely:

dφ

dρ
=
Eβ + Ẽβ̃

Dβ + D̃β̃
, (2.44)

where the new functions E(ρ) and Ẽ(ρ) are given by:

E = Nc

[

1

F
− 3(1 + w2 − 2wγ)

4ρ

]

,

Ẽ = −Nc

[

V

8ρ

√

F

ρ
+

3(w − γ)

2
√
Fρ

]

. (2.45)

As a check of eqs. (2.36)–(2.45) one can verify that they reduce to the ones of the truncated

system when w = γ = κ = 0. Notice that in this case β = 1 and β̃ = V = 0 and, as

a consequence B and C vanish and eq. (2.40) is solved by the truncated values (2.13).

Moreover, one easily demonstrates that, in this case, (2.36) and (2.44) reduces to (2.21)

and (2.22) respectively.

2.2.1 Initial conditions

Given a set of initial conditions for the functions F , w, γ and φ, and a value of the

integration constant κ, the system of equations (2.36), (2.40) and (2.44) can be numerically

integrated. Let us see how one can determine these initial data in a meaningful way.

First of all, let us fix the value of the function w(ρ) at ρ = 0. Recall (see (2.3)) that w

parameterizes the one-form Ai which, in turn, determines the mixing of the two three-

spheres in the ten-dimensional fibered geometry. The curvature of the gauge connection Ai

(defined as in (2.5) with Bi → Ai) determines the non-triviality of this mixing. Indeed, if

it vanishes the one-forms Ai are a pure gauge connection that can be taken to vanish after

a suitable gauge transformation. In this case one can choose a new set of three one-forms

in which the two three-spheres are disentangled in a manifest way. On the other hand,

from the wrapped brane origin of our solutions, one naturally expects such an un-mixing

of the two S3’s to occur in the IR limit ρ = 0 of the metric, where it should be possible to

factorize the directions parallel and orthogonal to the brane worldvolume in a well-defined

way. Moreover, by a direct calculation using (2.1) it is easy to verify that for w = 1 the

curvature of the one-form Ai vanishes and, thus, Ai is pure gauge. Thus, it follows that

the natural initial condition for w(ρ) is:

w(ρ = 0) = 1 . (2.46)
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Let us now fix the value of the constant κ by adapting the procedure employed in

ref. [19] in the case of backgrounds that are obtained by uplifting from seven-dimensional

gauged supergravity. In this reference the authors determined κ by imposing the van-

ishing at the origin of the pullback of the RR three-form on the three-cycle of the seven

dimensional geometry which, in our notations, is the one parameterized by the one-forms

σi. In the seven dimensional approach this three cycle shrinks at the origin and can be

naturally interpreted as the one on which the fivebranes are wrapped. This procedure

is possibly ambiguous when one tries to apply it in the ten-dimensional geometry, where

actual D5-branes live. Moreover, the solutions studied here cannot be obtained, in general,

by uplifting from seven dimensions. Therefore, it is convenient to search for a way to fix κ

directly in ten dimensions.

We start by noting that the seven dimensional cycle, parametrized by the one-forms

σi, does not shrink in the ten dimensional geometry and, thus, it does not look strictly

necessary that the RR three-form flux vanishes on it. Indeed, it does not shrink even in the

solutions found in [19]. We think that the relevant cycle, which should also be the cycle

on which the branes are wrapped, is:

Σ ≡ {ωi = σi}. (2.47)

To understand this, let us begin by pointing out that, even if the seven dimensional gauge

field Ai is pure gauge at the origin when the initial condition (2.46) holds, it is not vanishing

there. This non-vanishing of the gauge connection is the origin of the mixing among the

two three cycles in the ten-dimensional fibered geometry. As we are going to argue, this

mixing is taken into account if one considers the cycle (2.47) 1. It is indeed easy to see that

that cycle Σ is actually shrinking in the full ten-dimensional geometry if some regularity

conditions are satisfied. Let us require that the metric function F (ρ) approaches a constant

finite value F0 as ρ→ 0, namely:

F ≈ F0 , (ρ ∼ 0) . (2.48)

The induced metric on Σ is:

ds2Σ =
e

φ
2

4

[

ρ+
(1 − w)2

4
F

]

(σi)2 . (2.49)

Obviously, due to the factor in brackets in (2.49), ds2Σ → 0 as ρ→ 0 if eqs. (2.46) and (2.48)

hold and the dilaton φ is finite at the origin. Moreover, in order to have a non-singular

RR flux at the origin, one should require that F3 vanishes on Σ when ρ→ 0. We take this

condition as a general criterium to fix the value of κ. Remarkably, as can be easily verified

from our ansatz, the pullback of F3 on Σ is independent of ρ and given by:

F3

∣

∣

Σ
=
Nc

4

(

κ− 1

2

)

σ1 ∧ σ2 ∧ σ3 . (2.50)

1Alternatively, by performing a gauge transformation to A
i one can get a new gauge connection Ã

i =
1−w

2
σ̃

i, where σ̃
i is a new set of left-invariant one-forms. In this new gauge the condition (2.46) implies

that Ã
i vanishes at the origin and the analogue of the cycle Σ is just the cycle parameterized by the σ̃

i’s

with w
i = 0.
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Therefore, it is clear that we must fix the value of the constant κ to the value:

κ =
1

2
. (2.51)

Notice that this is exactly the value of κ used in [19]. Let us see how one can reobtain this

same value of κ by requiring that the dilaton is finite at ρ = 0. Let V0 be the value of the

function V defined in (2.38) at ρ = 0. Let us assume that V0 6= 0 and that w and F satisfy

the initial conditions (2.46) and (2.48). Then, by inspecting (2.39) one concludes that Λ̃

diverges at ρ ∼ 0:

Λ̃ ≈ Nc

24
V0

√

F0
1√
ρ
, (ρ ∼ 0) , (2.52)

while Λ remains finite at ρ = 0. This means that β ≈ 0 as ρ → 0 and, therefore, the

differential equation (2.44) for the dilaton reduces approximately to:

dφ

dρ
≈ Ẽ

D̃
, (ρ ∼ 0) . (2.53)

Moreover, from (2.45) and (2.37) we get that the leading behavior of the coefficients Ẽ and

D̃ as ρ→ 0 is:

Ẽ ≈ −Nc
V0

8ρ
3

2

√

F0 , D̃ ≈ Nc

4
V0

√
F0

ρ
1

2

, (ρ ≈ 0) . (2.54)

Therefore, the first-order equation (2.53) for the dilaton becomes:

dφ

dρ
≈ − 1

2ρ
, (ρ ≈ 0) , (2.55)

which, upon integration, gives rise to the divergent IR behaviour:

φ ∼ −1

2
log ρ+ o(ρ) . (2.56)

The only way to escape this conclusion is by requiring the vanishing of V0, namely:

V0 = 0 . (2.57)

But, from the expression for V in (2.38), we get that:

V0 = 8

(

κ− 1

2

)

, (2.58)

and, thus, the condition (2.57) fixes again the value of the constant κ to that written in

eq. (2.51). Notice that, contrary to what happens in (2.52), Λ̃ does not diverge at ρ = 0

when V0 = 0. Actually, Λ̃ → 0 in this case and, therefore, the only possibility of having

β ≈ 0 for ρ→ 0, as is required to deduce (2.53), is by imposing that Λ vanishes faster than

Λ̃ as ρ→ 0 which, in particular, implies that we must require:

Λ(ρ = 0) = 0 . (2.59)

– 13 –



J
H
E
P
0
5
(
2
0
0
8
)
0
1
1

If, on the contrary, (2.59) is not satisfied, one has that β̃ ≈ 0 as ρ → 0 and dφ/dρ ≈
E/D ∼ 1/ρ, which, again, gives rise to the undesired behavior φ ∼ log ρ near ρ ≈ 0. Thus,

in order to have a regular dilaton at ρ = 0, we should impose the condition (2.59). Actually,

from the expression of Λ in (2.39), as well as the initial conditions (2.46) and (2.48), it

is immediately possible to conclude that (2.59) implies that the IR value of γ should be

fine-tuned to the value:

γ(ρ = 0) = 1 . (2.60)

If (2.60) holds, equation (2.53) is still valid and one can check that, indeed, the dilaton

remains finite in the IR.

It is also interesting to look at the IR form of the metric (2.43) when the initial

conditions just found are satisfied. Since in this case β → 0, only the behavior of D̃ near

ρ→ 0 is relevant. One has:

D̃ ≈ −2
√

F0 ρ
1

2 , (ρ ≈ 0) . (2.61)

Using this result in (2.43), one gets that the (ρ, σi) part of the metric near ρ ∼ 0 takes the

form:
dρ2

4ρ
+
ρ

4
(σi)2 . (2.62)

Let us now change the radial variable to:

ρ = τ2 . (2.63)

The resulting metric in the (τ, σi) sector is:

dτ2 +
τ2

4
(σi)2 , (2.64)

which is just the metric of flat four-dimensional Euclidean space. Thus, one expects that

the metric for these solutions is regular at τ = 0. We have verified this fact by explicitly

computing the scalar curvature for our solutions and by checking that it remains finite at

τ = 0.

2.2.2 Explicit solution

Let us now solve the BPS equations in a series expansion around ρ ≈ 0. For this purpose,

let us suppose that F (ρ) is given by the series:

F = F0 + F1 ρ+ F2 ρ
2 + · · · . (2.65)

Then, by plugging this expansion into the BPS equations one can get the coefficients Fn
for n ≥ 1 in terms of F0. The corresponding expression of F1 and F2 is:

F1 =
(F0 −Nc)(9F0 + 5Nc)

12F 2
0

,

F2 =
(F0 −Nc)( 36F 3

0 − 4F 2
0Nc + 19F0N

2
c + 23N3

c )

144F 5
0

. (2.66)
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Figure 2: F and φ for three different values of the initial condition F0 (F0 = 2, 5 and 10) for

Nc = 1.

Interestingly, one can verify that when F0 = Nc the coefficients Fn vanish for n ≥ 1

and the exact solution is F = Nc as in the background studied in [19]. Similarly, for the

initial conditions at ρ = 0 displayed in (2.46) and (2.60), the functions w(ρ) and γ(ρ) can

be written as:

w = 1 +w1 ρ+ w2 ρ
2 + · · · ,

γ = 1 + γ1 ρ+ γ2 ρ
2 + · · · , (2.67)

with the first two coefficients given by:

w1 =
2Nc − 3F0

3F 2
0

, w2 =
18N3

c − 19F0N
2
c − 16F 2

0 Nc + 18F 3
0

36F 5
0

,

γ1 = − 1

3F0
, γ2 = −4N2

c − 4F0Nc − F 2
0

36F 2
0

. (2.68)

One can verify that for F0 = Nc one has wn = γn for all values of the index n. Indeed,

in this case our generalized solution collapses to the solution studied in [19]. Moreover, the

functions β and β̃ behave near ρ ≈ 0 as:

β =
1

2
√
F0

(

3 − Nc

F0

)√
ρ+ o(ρ

3

2 ) , β̃ = −1 + o(ρ) , (2.69)

while, for ρ→ 0 the dilaton can be expanded as:

φ = φ0 +
7N2

c

24F 3
0

ρ+ o(ρ2) , (2.70)

where φ0 is an integration constant. In particular this result implies that φ is regular at

ρ = 0, as claimed above.

The system of BPS equations can be solved numerically with the initial conditions just

found. From this numerical analysis we notice that, in addition to the solutions analyzed

in [19] (for which F = Nc and w = γ) there are others which, for ρ→ ∞, behave as:

F → ∞ , w → 0 , γ → γ∗ , (ρ→ ∞) , (2.71)
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Figure 3: The functions w and γ for three different values of the initial condition F0 (F0 = 2, 5

and 10) and Nc = 1.

where γ∗ is a finite value. In figure 2 we have plotted the function F and the dilaton

for several values of the constant F0. These curves should be compared with the ones in

figure 1. The main differences are in the IR behavior of F (ρ), which is now finite at ρ = 0.

In all these solutions the dilaton φ is asymptotically constant in the UV, in contrast with

the ones of [19], for which the dilaton grows linearly with the holographic coordinate. In

figure 3 we have represented the functions w and γ for the same set of values of F0 as in

figure 2.

The behaviour (2.71) is easy to reproduce analytically by studying the system of the

BPS equations. Indeed, if F , w and γ behave as in (2.71) then one readily gets from (2.39)

that, at leading order, Λ → ∞ and Λ̃ → constant for large ρ and, as a consequence,

β → 1 and β̃ → 0 as ρ → ∞. Moreover, one can straightforwardly demonstrate that

equation (2.36) determining F reduces to the one found in the truncated system in (2.25).

From the general solution written in (2.26) we see that F ≈ 4ρ/3 for ρ→ ∞. Furthermore,

one can verify that it is consistent to take the following behavior of w as ρ→ ∞:

w ≈ b

ρ
, (2.72)

with b being a constant to be determined. Then, at leading order, one gets from (2.39):

Λ ≈ 4

3
ρ ,

Λ̃ ≈ Nc

12
√

3
V∗ −

2b√
3

−
√

3

4
Nc γ∗ ≡ Λ̃∗ , (ρ→ ∞) , (2.73)

where V∗ is the asymptotic value of V at ρ→ ∞. Taking into account the expression of V

(eq. (2.38)), this value can be written in terms of the asymptotic value of γ as follows:

V∗ = 8κ− 3γ∗ , (2.74)
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where we have momentarily considered a general value of the integration constant κ. Notice

also that β and β̃ behave as:

β ≈ 1 − Λ̃2
∗

2Λ2
≈ 1 − 9Λ̃2

∗

32

1

ρ2
,

β̃ ≈ Λ̃

Λ
≈ 3Λ̃∗

4

1

ρ
, (ρ→ ∞) . (2.75)

Using this result one can write asymptotically the differential equation for γ(ρ) as:

dγ

dρ
≈ C

D
≈

[

V∗
3

− 3γ∗

]

1

2ρ
. (2.76)

Consistency at leading order requires that γ∗ and V∗ must be related by:

γ∗ =
V∗
9
. (2.77)

Taking into account the value of V∗ written in (2.74), one gets the value of γ∗ in terms of

the constant κ, namely:

γ∗ =
2κ

3
. (2.78)

Notice then that the asymptotic value of V is:

V∗ = 6κ . (2.79)

Let us now calculate the coefficient b that determines the asymptotic behavior of the

function w. With this purpose, we notice that the functions B and B̃ defined in (2.41)

behave as:

B =
Nc

6ρ

[

V∗ + 9γ∗

]

,

B̃ =
4√
3
, (ρ→ ∞) . (2.80)

Also taking into account that F ∼ 4ρ/3, as well as eqs. (2.72) and (2.75), one gets that:

dw

dρ
=

3

2ρ2

[

Nc

8
(V∗ + 3γ∗ ) − b

]

, (2.81)

which, for consistency with (2.72), implies that:

b = 3Nc κ . (2.82)

Finally, one can verify from (2.44) that the dilaton φ reaches a constant value when ρ→ ∞.

Taking into account that the regularity conditions in the IR fix κ to be equal to 1/2,

one gets that the actual values of γ∗ and b are:

γ∗ =
1

3
, b =

3Nc

2
, (2.83)
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a result which is confirmed by our numerical solutions.

It is interesting to compare the background found here with the one obtained in [19].

The latter corresponds to D5-branes wrapped on a three-cycle of a manifold of G2 holonomy

in the near-horizon limit which, as it should, has a dilaton which grows linearly with the

holographic coordinate in the UV. In our case the dilaton is asymptotically constant and

the metric approaches that of a G2 cone as we move towards the UV, while in the IR

region our solution is qualitatively similar to the one analyzed in [19]. It is thus natural

to regard our solution as corresponding to D5-branes wrapped on a three-cycle of a G2

cone, in which the near horizon limit has not been taken and, thus, as we move towards

the large ρ region the effect of the branes on the metric becomes asymptotically negligible

and we recover the geometry of the G2 cone where the branes are wrapped. Notice that in

reference [8] the authors found similar backgrounds for the case of D5-branes wrapped on

a two-cycle. In this case the solutions asymptotically approach the conifold geometry.

3. Addition of flavor

Our main motivation to study a generalized ansatz of the form (2.2)–(2.4) was to explore the

addition of unquenched flavors to the supergravity duals of N = 1 supersymmetric gauge

theories in 2+1 dimensions. Indeed, we will show below that the backreacted flavored

metrics that we will find can be represented in the form (2.2), i.e. their deformation with

respect to the unflavored ones of [19] is just of the type studied in section 2. We will achieve

this conclusion in three steps. First of all, we will study the problem in the approximation

in which the flavor brane is considered as a probe in the unflavored background.

The appropriate flavor branes for our case are wrapped D5-branes that fill the

Minkowski spacetime and are extended in the holographic direction. By using kappa sym-

metry [25] of the probe we will be able to find some simple configurations that preserve all

supersymmetries of the background. In these configurations the D5-branes are extended

along a submanifold of the internal space that has the topology of a cylinder and reaches

the origin of the holographic coordinate. They can be used to add massless flavors to the

gravity dual of [19]. Actually there is a continuous family of such supersymmetry preserv-

ing embeddings. In a second step we will determine how to combine these embeddings to

produce a distribution of them that produces a backreaction on the background such that

the metric is still of the form (2.2). In general the flavor branes act as sources for the RR

fields and also modify the energy-momentum tensor. Due to the fact that we will consider

a continuous distribution of D5-branes, these extra terms are not localized and, as we will

see, their influence in the background can be obtained.

The main modification of the backreacted ansatz with respect to the one studied in

section 2 is that in the unquenched case the new RR source terms give rise to a violation of

the Bianchi identity for F3. In a third step we will determine the appropriate modification

of F3 that gives rise to the desired violation of the Bianchi identity. Moreover, once F3 is

known we can use it in the supersymmetry variations and obtain the BPS equations of the

flavored backgrounds, exactly in the same way as in the unflavored system. This analysis

is performed in appendix A, whereas the study of the different solutions of the BPS system
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will be carried out in the remaining sections of this paper. In appendix B we show that

the backgrounds obtained in this way solve the second order equations of motion of the

supergravity plus brane system.

3.1 Supersymmetric probes

Let us consider a D5-brane probe in some of the backgrounds studied in section 2 and

let ξµ (µ = 0, · · · , 5) be a set of worldvolume coordinates. If XM denote ten-dimensional

coordinates, the D5-brane embedding will be characterized by a set of functions XM (ξµ).

The induced metric on the worldvolume is:

Ĝ(6)
µν = ∂µX

M ∂νX
N GMN , (3.1)

where GMN is the ten-dimensional metric. The embeddings of the D5-brane probe that

preserve the supersymmetry of the background are those that satisfy the kappa symmetry

condition [28]:

Γκ ǫ = ǫ , (3.2)

where Γκ is a matrix that depends on the embedding of the probe and ǫ is a Killing spinor

of the background. Acting on spinors ǫ such that ǫ = iǫ∗ (as the ones of our background,

see (A.6)) and assuming that there is no worldvolume gauge field, the matrix Γκ for a

D5-brane probe is [25, 28]:

Γκ =
1

6!

1
√

−Ĝ6

ǫµ1···µ6 γµ1···µ6
, (3.3)

where Ĝ6 is the determinant of the induced metric Ĝ
(6)
µν and γµ1···µ6

is the antisymmetrized

product of worldvolume Dirac matrices γµ. In order to define these induced matrices, let

us denote by E
M
N the coefficients that appear in the expression of the frame one-forms eM

of the ten-dimensional metric in terms of the differentials of the coordinates, namely:

eM = E
M
N dXN . (3.4)

Then, the induced Dirac matrices on the worldvolume are defined as

γµ = ∂µX
M E

N
M ΓN , (3.5)

where ΓN are constant ten-dimensional Dirac matrices. Moreover, the pullback of the

frame one-forms eM is given by:

P [ eM ] = E
M
N ∂µX

N dξµ ≡ CMµ dξµ , (3.6)

where, in the last step, we have defined the coefficients C
M
µ ≡ E

M
N ∂µX

N . Notice that the

induced Dirac matrices γµ can be expressed in terms of the constant Γ’s by means of these

same coefficients C
M
µ , namely:

γµ = CMµ ΓM . (3.7)
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In order to obtain the particular class of D5-brane embeddings that we are interested in to

add flavor to the supergravity dual of 2+1 dimensional gauge theories, let us parameterize

the forms σi and ωi in terms of the angles θi, ϕi and ψi (i = 1, 2) as follows:

σ1 = cosψ1dθ1 + sinψ1 sin θ1dϕ1 , ω1 = cosψ2dθ2 + sinψ2 sin θ2dϕ2 ,

σ2 = − sinψ1dθ1 + cosψ1 sin θ1dϕ1 , ω2 = − sinψ2dθ2 + cosψ2 sin θ2dϕ2 ,

σ3 = dψ1 + cos θ1dϕ1 , ω3 = dψ2 + cos θ2dϕ2 . (3.8)

Next, let us consider a D5-brane probe with worldvolume coordinates:

ξµ = (x0, x1, x2, ψ1, r, ψ2) , (3.9)

and let us embed the D5-brane in the general geometry in such a way that:

θi = constant , ϕi = constant , (i = 1, 2) . (3.10)

Let us choose the same vierbein basis as in (A.2). Then, for the embedding (3.10) the

pullbacks of the frame one-forms are:

P
[

ex
i ]

= ef dxi , (i = 0, 1, 2) , P
[

er
]

= ef dr , (3.11)

P
[

e1
]

= P
[

e2
]

= 0 , P
[

e3
]

=
ef+h

2
dψ1 ,

P
[

e1̂
]

= P
[

e2̂
]

= 0 , P
[

e3̂
]

=
ef+g

2

[

dψ2 −
1 + w

2
dψ1

]

.

Therefore, the induced γ-matrices are:

γxi = ef Γxi , (i = 0, 1, 2) , γr = ef Γr ,

γψ1
=
ef

2

(

eh Γ3 −
1 + w

2
eg Γ3̂

)

, γψ2
=
ef+g

2
Γ3̂ , (3.12)

and, thus, the kappa symmetry matrix Γκ of eq. (3.3) is:

Γκ =
1

√

−Ĝ6

γx0x1x2ψ1rψ2
. (3.13)

By using the expression of the induced Dirac matrices written above, we get:

Γκ ǫ =
e6f+h+g

4
√

−Ĝ6

Γx0x1x2 Γ3 ΓrΓ3̂ ǫ . (3.14)

Moreover, in the type IIB theory the total ten-dimensional chirality of the spinors is fixed.

Thus:

Γx0x1x2 Γ123 Γr Γ̂123 ǫ = ǫ . (3.15)

Taking into account that Γ12Γ̂12ǫ = ǫ (see eq. (A.6)), we conclude that:

Γx0x1x2 Γ3 ΓrΓ3̂ ǫ = ǫ . (3.16)

Moreover, by computing the determinant of the induced geometry for these embeddings,

we arrive at:
√

−Ĝ6 =
e6f+h+g

4
. (3.17)

From the last two equations it follows that, indeed, Γκ ǫ = ǫ, i.e. these cylinder embeddings

preserve all supersymmetries of the background.

– 20 –



J
H
E
P
0
5
(
2
0
0
8
)
0
1
1

3.2 Smeared configurations

Notice that the embeddings just considered are mutually supersymmetric for any value of

the transverse angles θ1, ϕ1, θ2 and ϕ2. Thus, if we have a stack of Nf flavor branes, with

Nf → ∞, we can distribute them in an homogeneous way along the directions transverse

to the embeddings (3.10). As usual, the action for such a stack will be given by the sum

of a DBI and a WZ term, namely:

Sflavor = T5

∑

Nf

[

−
∫

M6

d6ξ e
φ
2

√

−Ĝ6 +

∫

M6

Ĉ6

]

. (3.18)

The smearing procedure amounts to performing the following substitution on the DBI term

of (3.18):

−T5

∑

Nf

∫

M6

d6ξ e
φ
2

√

−Ĝ6 =⇒ −T5Nf

(4π)2

∫

M10

d10 x sin θ1 sin θ2 e
φ
2

√

−Ĝ6 , (3.19)

where the factor sin θ1 sin θ2 originates in the volume form of the space transverse to the

embedding and (4π)2 is a normalization factor that ensures that the total number of D5-

branes is just Nf . Similarly, the WZ term of the system of smeared flavor branes is:

T5

∑

Nf

∫

M6

Ĉ6 =⇒ −T5Nf

(4π)2

∫

M10

Vol(Y1,2
4 ) ∧C6 , (3.20)

and the minus sign is due to the different orientation of the worldvolume coordinates (3.9)

and those of the ten-dimensional space. In (3.20) Vol(Y1,2
4 ) is the volume form of the

four-dimensional space spanned by the directions 1, 2, 1̂ and 2̂, namely:

Vol(Y1,2
4 ) = sin θ1 sin θ2 dθ1 ∧ dϕ1 ∧ dθ2 ∧ dϕ2 = σ1 ∧ σ2 ∧ ω1 ∧ ω2 . (3.21)

The cylinder embeddings just considered are extended along the 3 and 3̂ directions. How-

ever, there is nothing special in our background about these directions. Indeed, both in

the metric and in the RR three-form, we are adopting a round ansatz which does not

distinguish among the directions of the two three-spheres. Actually, by using an appro-

priate coordinate parameterization of the σi and ωi one-forms one can straightforwardly

construct supersymmetric cylinder embeddings that span the 1, 1̂ or 2, 2̂ directions. The

volume forms of the spaces transverse to these embeddings are clearly:

Vol(Y2,3
4 ) = σ2 ∧ σ3 ∧ ω2 ∧ ω3 , Vol(Y1,3

4 ) = σ1 ∧ σ3 ∧ ω1 ∧ ω3 . (3.22)

To construct a backreacted supergravity solution with the same type of ansatz as in (2.2) we

should consider a brane configuration that combines these three possible types of embed-

dings in an isotropic way. The corresponding transverse volume form of this three-branch

brane system would be:

Vol(Y4 ) = Vol(Y1,2
4 ) + Vol(Y2,3

4 ) + Vol(Y1,3
4 ) . (3.23)
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Notice that the WZ term of the action of the flavor branes can be written as:

SWZ
flavor = T5

∫

M10

Ω ∧ C6 , (3.24)

where Ω is the following four-form:

Ω = − Nf

16π2
Vol(Y4 ) . (3.25)

Let us now write the DBI action for the D5-brane in terms of the smearing form Ω.

First of all, we notice that Ω is the sum of three decomposable pieces, namely:

Ω = Ω(1) + Ω(2) + Ω(3) , (3.26)

where Ω(i) is the transverse volume form of the ith branch. Let us define the modulus of

any of these components as:

∣

∣

∣

∣

Ω(i)

∣

∣

∣

∣

=

√

√

√

√

1

4!
Ω

(i)
M1···M4

Ω
(i)
N1···N4

4
∏

k=1

GMkNk . (3.27)

In order to compute these moduli, it is convenient to express the Ω(i)’s in flat components

with respect to the basis of one-forms (A.2):

Ω(1) = −Nf

π2
e−4f−2h−2g e1 ∧ e2 ∧ e1̂ ∧ e2̂ ,

Ω(2) = −Nf

π2
e−4f−2h−2g e1 ∧ e3 ∧ e1̂ ∧ e3̂ ,

Ω(3) = −Nf

π2
e−4f−2h−2g e2 ∧ e3 ∧ e2̂ ∧ e3̂ . (3.28)

It follows from the previous expressions that:

∣

∣

∣

∣

Ω(1)

∣

∣

∣

∣

=

∣

∣

∣

∣

Ω(2)

∣

∣

∣

∣

=

∣

∣

∣

∣

Ω(3)

∣

∣

∣

∣

=
Nf

π2
e−4f−2h−2g . (3.29)

The DBI action for the first branch in the standard coordinate system can be written in

terms of |Ω(1) |. Indeed, one can prove that this action is given by:

−T5Nf

(4π)2

∫

M10

d10 x sin θ1 sin θ2 e
φ
2

√

−Ĝ6 = −T5

∫

M10

d10x e
φ
2

√
−G

∣

∣

∣

∣

Ω(1)

∣

∣

∣

∣

. (3.30)

It is now clear how to generalize this result to include the three branches, namely:

SDBI
flavor = −T5

∫

M10

d10x e
φ
2

√
−G

∑

i

∣

∣

∣

∣

Ω(i)

∣

∣

∣

∣

. (3.31)

Thus the total action of the brane distribution can be written in terms of the four-form Ω.
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3.3 The backreaction

Let us consider the coupled gravity plus branes system with action:

S = SIIB + Sflavor , (3.32)

where SIIB is the action, in the Einstein frame, of type IIB supergravity for the metric,

dilaton and RR three-form F3:

SIIB =
1

2κ2
10

∫

d10x
√
−G

[

R− 1

2
∂Mφ∂

Mφ− 1

12
eφ F 2

3

]

, (3.33)

and Sflavor is the action for a set of smeared flavor D5-branes, given by:

Sflavor = −T5

∫

M10

d10x e
φ
2

√
−G

∑

i

∣

∣

∣

∣

Ω(i)

∣

∣

∣

∣

+ T5

∫

M10

Ω ∧ C6 . (3.34)

In (3.34) Ω is the four-form that encodes the RR charge distribution of the smeared stack

of D5-branes, while the moduli
∣

∣Ω(i)
∣

∣ of its decomposable parts determine the mass dis-

tribution of the stack. In order to determine how the smeared action (3.34) for the flavor

branes affects the equations of motion of the RR forms, it is convenient to recall that, in

the Einstein frame, the field strength F7 = dC6 is related to F3 as F7 = −eφ ∗F3. Then,

the equation of motion of C6 derived from the action (3.32) is just:

d

(

e−φ ∗F7

)

= −2T5 κ
2
10 Ω . (3.35)

Using the fact that, in our conventions:

T5 =
1

(2π)5
, 2κ2

10 = (2π)7 , (3.36)

we can rewrite the equation for C6 as:

d

(

e−φ ∗F7

)

= −4π2 Ω . (3.37)

Since eφ F3 = −∗F7, this equation is equivalent to the following violation of the Bianchi

identity of F3:

dF3 = 4π2 Ω = −Nf

4
Vol(Y4) , (3.38)

where Vol(Y4) has been written in (3.23). It is clear from this last equation that, in order

to find a solution including the backreaction of the smeared flavor branes, we must modify

our ansatz for the RR three-form F3. Actually, we shall try to find a solution in which

F3 = F3 + f3 , (3.39)

where F3 is just given by the same ansatz (2.4) as in the unflavored case (with dF3 = 0)

and f3 is a new term that gives rise to the violation (3.38) of the Bianchi identity. It is

easy to see that one can take:

f3 =
Nf

8
ǫijk

(

ωi − σi

2

)

∧ σj ∧ σk . (3.40)
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By plugging the modified ansatz (3.39)–(3.40) for the RR three-form into the supersym-

metric variations of the dilatino and gravitino of type IIB supergravity one obtains a system

of first-order BPS equations for the different functions of the ansatz. The corresponding

calculations are presented in appendix A. In appendix B we check that any solution of the

BPS equations solves the equations of motion.

Let us point out that, as happened for the unflavored case, one can consistently trun-

cate the BPS equations by taking w = γ = κ = 0. In some cases this truncation represents

the UV limit of the solutions of the full BPS system of equations. In the next section we

will study in detail these simplified solutions and we will get some interesting information

about the corresponding gauge theory duals. The analysis of the complete BPS equations

will be performed in section 5.

4. The truncated system with flavor

In this section we will analyze the truncation of the general system of BPS equations that

corresponds to taking w = γ = α = V = 0. In this case the equations of appendix A for

the dilaton and for the remaining functions h and g of the metric reduce to:

φ′ = Nc e
−3g − 3

4
(Nc − 4Nf ) e−g−2h ,

h′ =
1

2
eg−2h +

Nc − 4Nf

2
e−g−2h ,

g′ = e−g − 1

4
eg−2h −Nc e

−3g +
Nc − 4Nf

4
e−g−2h . (4.1)

By inspecting the system (4.1) one readily realizes that there are some special solutions

for which the metric functions h and g are constant. Actually these solutions only exist

when Nc < 2Nf and the expressions of g and h are the following:

e2g = 4Nf −Nc , e2h =
1

4

(4Nf −Nc)
2

2Nf −Nc
, (Nc < 2Nf ) , (4.2)

while the dilaton grows linearly with the holographic coordinate r, namely:

φ =
2(3Nf −Nc)
[

4Nf −Nc]
3

2

r + φ0 . (4.3)

Let us next consider solutions for which the function h is not constant. In this case

we can use ρ = e2h as radial variable as in (2.19) and one can define the function F (ρ) as

in (2.20). The BPS equation for F (ρ) is now:

dF

dρ
=

(F −Nc)

(

2 − F
2ρ

)

− 2Nf

ρ F

F +Nc − 4Nf
, (4.4)

while the equation for the dilaton as a function of ρ can be written as:

dφ

dρ
=

Nc

F (F +Nc − 4Nf )

[

1 − 3

4ρ

(

1 − 4Nf

Nc

)

F

]

. (4.5)
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Moreover, from the second equation in (4.1) we can obtain the relation between the two

radial variables r and ρ, namely:

dr

dρ
=

√

F (ρ)

F (ρ) +Nc − 4Nf
. (4.6)

Notice that, contrary to the unflavored case (see eq. (2.23)), the sign of the right-hand

side of (4.6) could be negative when Nf 6= 0. This means that we have to be careful in

identifying the UV and IR domains in terms of the new radial variable ρ. Let now study

different solutions of eqs. (4.4)–(4.5).

4.1 Linear dilaton backgrounds

It is clear from (4.4) that in this case F = Nc is no longer a solution of the equations.

However, there are solutions for which this constant value of F is reached asymptotically

when ρ → ∞. Indeed, one can check this fact by solving (4.4) as an expansion in powers

of 1/ρ. One gets:

F = Nc +NcNf
1

ρ
− 3

4
NcNf (Nc − 4Nf )

1

ρ2
+ · · · , (ρ→ ∞) . (4.7)

By plugging the expansion (4.7) into (4.5) one can prove that, when Nc 6= 2Nf , these

solutions have a dilaton that depends linearly on ρ in the UV and, actually, one can verify

that:

dφ

dρ
=

1

2(Nc − 2Nf )
−

3N2
c − 12NcNf + 16N2

f

8(Nc − 2Nf ))2
1

ρ
+ · · · , (ρ→ ∞) . (4.8)

Notice the different large ρ behavior of the dilaton in the two casesNc > 2Nf andNc < 2Nf .

Indeed, when Nc > 2Nf the dilaton grows linearly with the holographic coordinate ρ (the

behavior expected for a confining theory), while for Nc < 2Nf the field φ decreases linearly

with ρ. This seems to suggest that the beta function of the dual gauge theory depends

on Nc and Nf through the combination Nc − 2Nf . Actually, one can verify that when

Nc > 2Nf the sign of dr/dρ is positive, while if Nc < 2Nf the derivative dr/dρ changes

its sign and r decreases when ρ increases. Indeed, by plugging the expansion (4.7) on the

right-hand side of (4.6) one gets:

dr

dρ
=

√
Nc

2(Nc − 2Nf )
+

√
NcN

2
f

2(Nc − 2Nf )2
1

ρ
+ · · · , (ρ→ ∞) . (4.9)

The first term on the right-hand side of (4.9) is clearly dominant for ρ→ ∞. Its sign is

the same as the one in the combination Nc−2Nf , which shows that, at least in the ρ→ ∞
region, the relation between the two radial variables r and ρ is the one described above. One

can confirm this behavior by numerical integration of the differential equations (4.4), (4.5)

and (4.6). In figures 4 and 5 we have plotted the result of this integration for a case in

which Nc > 2Nf , namely Nc = 4, Nf = 1. We have integrated (4.4) by imposing the

behavior (4.7) on F (ρ) for large ρ. Once F (ρ) is known one can obtain φ(ρ) and r(ρ)
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Figure 4: The function F and the dilaton for the case Nc = 4, Nf = 1.
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Figure 5: Relation between the radial variables r and ρ for the case Nc = 4, Nf = 1.

by direct integration of the right-hand sides of eqs. (4.5) and (4.6). We notice in figure 4

that F diverges for ρ → 0, while the dilaton φ remains finite for small ρ. It is easy to

characterize analytically these behaviors. Indeed, for small ρ it is also possible to solve the

equations (4.4) and (4.5) in a series expansion near ρ ≈ 0. For the function F (ρ) one has:

F (ρ) =
c0√
ρ

+ 2(Nc − 4Nf ) −
(Nc − 4Nf )

2

c0

√
ρ+

(

4

3
+

2(Nc − 4Nf )
3

c20

)

ρ+ · · · , (4.10)

where c0 is an integration constant which, for consistency, must be taken to be positive.

In general, only for one particular value of c0 6= 0 does one get a solution that behaves as

in (4.7) for ρ→ ∞. Similarly, the dilaton for ρ ≈ 0 behaves as:

dφ

dρ
= −3(Nc − 4Nf )

4c0

1√
ρ

+
9(Nc − 4Nf )

2

4c20
+ · · · , (ρ ≈ 0) . (4.11)

(Compare eqs. (4.10) and (4.11) with the ones corresponding to the unflavored solutions,

namely (2.33) and (2.34)). Notice that, as in our numerical integration, eq. (4.11) implies

that φ is regular at ρ ≈ 0 when c0 6= 0 (although dφ
dρ is divergent). One can also easily get

the value of the derivative dr/dρ for small values of ρ, which is given by:

dr

dρ
=

ρ
1

4

√
c0

− 2(Nc − 4Nf )

c
3

2

0

ρ
3

4 + · · · , (ρ ≈ 0) . (4.12)
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Figure 6: The function F and the dilaton φ for the case Nc = 1, Nf = 1.
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Figure 7: The function r(ρ) for the case Nc = 1, Nf = 1. This curve is obtained by integrating

eq. (4.6) in the region in which F is non-negative.

From the plot of r versus ρ of figure 5 we notice that r grows monotonically with ρ in this

Nc > 2Nf case. This means that the UV region r → ∞ corresponds to large values of ρ.

Below we will study the beta function of the gauge theory and we will conclude that the

theory is asymptotically free when Nc > 2Nf , while it develops a Landau pole in the UV

when Nc < 2Nf . We can confirm this statement by looking at the result of the numerical

integration when Nc < 2Nf . In figure 6 we present the result of this integration for Nc = 1

and Nf = 1. As before, we impose the behavior (4.7) for large values of ρ. We notice that

F (ρ) becomes negative at some finite value ρ∗ of the coordinate ρ, which means that the

space ends at ρ = ρ∗ and we should consider the region ρ ≥ ρ∗ as the one that is physically

sensible. Actually, in this region the dilaton φ decreases with ρ. A glance at the r − ρ

relation displayed in figure 7 shows that r decreases with ρ and, actually, large values of

ρ correspond to small values of r, i.e. to the IR region of the dual gauge theory. It is also

clear from figure 7 that there is a maximal value of r, which corresponds to the minimal

value ρ∗ of ρ. This fact is signaling the presence of a Landau pole in the UV of the gauge

theory dual.

When Nc = 2Nf the expansion (4.8) is clearly not valid and we are in a borderline

case. One can prove that in this case

dφ

dρ
=

2

N2
c

ρ− 1

Nc
+ · · · , (Nc = 2Nf , ρ→ ∞) , (4.13)
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and, thus, φ grows quadratically with ρ when ρ → ∞. Similarly, when Nc = 2Nf , the

relation between the two radial variables r and ρ is:

dr

dρ
=

2

(Nc)
3

2

ρ+
2√
Nc

+ · · · , (Nc = 2Nf , ρ→ ∞) , (4.14)

which means that r ∼ ρ2. By combining the last two equations we conclude that the

dilaton grows linearly with the r coordinate also in this Nc = 2Nf case.

4.2 Flavored G2 cone

Let us now consider the solution of the equations (4.4) and (4.5) that leads to a metric

which is asymptotically a G2-cone with constant dilaton in the UV. It can be checked that

there exists a solution of (4.4) which can be expanded for large values of ρ as:

F =
4

3
ρ+ 4(Nf −Nc) +

15N2
c − 39NcNf + 24N2

f

ρ
+ · · · . (4.15)

The corresponding expansion for dφ/dρ is:

dφ

dρ
=

9Nf

4

1

ρ2
+

27

16
Nc (Nc + 2Nf )

1

ρ3
+ · · · , (4.16)

which can be integrated as:

φ = φ∞ − 9Nf

4

1

ρ
− 27

32
Nc (Nc + 2Nf )

1

ρ2
+ · · · . (4.17)

Notice that, when Nf = 0, the expansions (4.15) and (4.16) reduce to the ones displayed

in eqs. (2.30) and (2.31). To find the solution in the whole range of the radial coordinate

one can integrate numerically the system (4.4)–(4.5) by imposing the asymptotic behav-

ior (4.15) to the function F (ρ). The results for Nc ≥ 2Nf are similar to the ones found

in subsection 2.1 for the unflavored system and, in particular, the solution is well-defined

for all possible values of the coordinate ρ. On the contrary, when Nc < 2Nf the solution

only makes sense when ρ is greater than some ρ0, with ρ0 > 0. To illustrate this fact

let us consider a particular case with Nc < 2Nf , namely Nc = Nf . In this case the BPS

system (4.4)–(4.5) can be integrated analytically. We first notice that the subleading terms

in (4.15) cancel when Nc = Nf . Actually, one can check that in this case the leading term

in (4.15) is an exact solution of the differential eq. (4.4), namely:

F =
4

3
ρ , (Nf = Nc) . (4.18)

Plugging this result into the equation (4.5) for φ, one gets:

φ = φ∞ + log

(

1 − 9Nc

4ρ

)

, (Nf = Nc) . (4.19)

As a check one can verify that the expansion of (4.19) for large values of ρ coincides with

the one written in (4.17) for Nc = Nf . Notice that the dilaton in (4.19) diverges when

ρ = ρ∗, where ρ∗ is given by:

ρ∗ =
9Nc

4
. (4.20)
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To understand the origin of this divergence it is interesting to look at the change of radial

variables in this case. Actually, when Nc = Nf the equation (4.6) that determines the

function r(ρ) can be integrated to give:

r(ρ) = r0 +
√

3ρ+
3
√

3Nc

4
log

[

2
√
ρ− 3

√
Nc

2
√
ρ+ 3

√
Nc

]

, (Nf = Nc) . (4.21)

It is clear from this expression that r(ρ) → −∞ if ρ → ρ∗. Thus, as r must be non-

negative, we should restrict ρ to the range ρ0 ≤ ρ < +∞, where ρ0 > ρ∗ is determined

by the condition r(ρ0) = 0 (the actual value of ρ0 depends on the value chosen for the

integration constant r0 in (4.21)).

5. The general system with flavor (Nc ≥ 2Nf)

Let us now consider the BPS equations of appendix A in full generality. In this section

we will restrict ourselves to the case Nc ≥ 2Nf which, according to our analysis of the

truncated system in section 4, is expected to give more sensible solutions describing an

asymptotically free gauge theory. First of all, as in subsection 2.2, we are going to write

these equations in terms of the variable ρ = e2h. The equation for F = e2g as a function

of ρ can be written as in (2.36), where now the coefficients A, Ã, D and D̃ are given by:

A =

[

2 − (1 − w2)
F

2ρ

] [

F −Nc

]

− 2Nf
F

ρ
+Ncw (w − γ)

F

ρ
,

Ã = 2Nc (w − γ)

√

F

ρ
,

D = (1 − w2) (F +Nc) − 4Nf + 2Nc w (w − γ) ,

D̃ =
Nc

4
V

√

F

ρ
+Nc (w − γ)

√

ρ

F
− 2w

√

Fρ , (5.1)

with V being the function of w, γ and the constant κ written in (A.5). In this case we can

also represent β and β̃ as in (A.25), but now the functions Λ and Λ̃ are the following:

Λ = ρ+
1 − w2

4
F +

Nc

4

(

1 − 4Nf

Nc
+ w2 − 2wγ

)

− Ncρ

3F
,

Λ̃ =
Nc

24
V

√

F

ρ
− w

√

ρF +
Nc

2
(w − γ)

√

ρ

F
. (5.2)

Similarly, the equations that govern w and γ can be written as in (2.40), with the coefficients
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B, B̃, C and C̃ given by:

B =
2Nc

3

[

V

4ρ
− 3

w − γ

F

]

,

B̃ =
4

3

[(

3 − 2Nc

F

)
√

ρ

F
− 3

4
(1 − w2)

√

F

ρ

]

,

C =
2

3

[

V

4ρ
F + 3(w − γ)

]

,

C̃ =
4

3

[
√

ρ

F
− 3

4

(

1 − 4Nf

Nc
+ w2 − 2wγ

)

√

F

ρ

]

. (5.3)

Finally, the BPS equation for the dilaton can be represented as in (2.44), where now

the functions E and Ẽ are:

E = Nc

[

1

F
− 3

4ρ

(

1 − 4Nf

Nc
+ w2 − 2wγ

)]

,

Ẽ = −Nc

[

V

8ρ

√

F

ρ
+

3(w − γ)

2
√
Fρ

]

. (5.4)

As in the unflavored case, in order to solve the BPS system we have to fix the initial

conditions of the different functions of the ansatz, as well as the constant κ. To determine

these values we follow, step by step, the procedure employed in subsection 2.2 for the

unflavored case. Namely, we will impose certain regularity conditions in the IR. Notice

that, according to our analysis of the truncated system in section 4, we expect that for

Nc ≥ 2Nf this IR region will correspond to ρ ≈ 0.

First of all, let us point out that the arguments given in order to arrive at eq. (2.46)

are still valid in this case and, therefore, we will continue to require that w(ρ = 0) = 1.

Moreover, the requirement that F (ρ) is regular at ρ = 0 is also quite natural and, thus,

we will also assume that (2.48) holds in this flavored case. Notice that the cycle Σ defined

in (2.47) also collapses in the IR in the present case (the induced metric on Σ is still given

by (2.49)) and, therefore, we should impose the vanishing of the corresponding pullback of

F3. Actually, it is immediate from (3.40) that the pullback on Σ of the flavor contribution

f3 to the RR three-form is:

f3

∣

∣

Σ
=

3Nf

8
σ1 ∧ σ2 ∧ σ3 , (5.5)

and thus, the total pullback of F3 is:

F3

∣

∣

Σ
=
Nc

4

[

κ− 1

2
+

3Nf

2Nc

]

σ1 ∧ σ2 ∧ σ3 . (5.6)

Thus, we will require that κ takes the value:

κ =
1

2
− 3Nf

2Nc
. (5.7)

The next requirement that we will implement is the regularity of the dilaton in the IR.

Since the reasoning that leads to the behavior (2.56) is also valid for the flavored system, we
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conclude that we should also impose (2.57) in the present case. Moreover, by substituting

w = 1 in the expression for V in (A.5), we get:

V0 = 8

(

κ− 1

2
+

3Nf

2Nc

)

, (5.8)

which vanishes precisely when κ is given by the value displayed in (5.7). As we discussed

in subsection 2.2, the vanishing of V0 is not sufficient to ensure the finiteness of φ at the

origin. Indeed, in addition, we should require (2.59), i.e. that Λ is also vanishing at ρ = 0.

From the expression of Λ given in (5.2) one discovers that this condition determines the

IR value of γ to be:

γ(ρ = 0) = 1 − 2Nf

Nc
. (5.9)

Notice that the only freedom left by our IR regularity conditions is the value F0 of the

function F (ρ) at ρ = 0. By changing this value of F0 we can select some particular

classes of solutions. We are mostly interested in the backgrounds for which the dilaton

grows linearly with the holographic coordinate in the UV and such that the function F (ρ)

reaches a constant value when ρ → ∞. Those backgrounds are the flavored analogue

of the ones studied in [19] and can be naturally interpreted as the gravity dual of 2+1

dimensional gauge theories with quarks transforming in the fundamental representation

of the gauge group. They will be obtained in subsection 5.1 by fine tuning F0 to some

particular value, that depends on the numbers of colors and flavors. In the UV region

ρ → ∞ we expect that these new backgrounds will coincide with the solutions of the

truncated system studied in subsection 4.1, while for ρ→ 0 a significant difference between

the truncated and untruncated solutions is expected.

Notice that the initial conditions (2.46) and (5.9) ensure that the (ρ, σi) part of the

metric is of the form (2.62). Nevertheless, in this flavored case the explicit calculation of

the scalar curvature for the linear dilaton solutions shows that the metric is singular at the

origin of the radial coordinate. This singularity, which is absent in the general unflavored

case of section (2.2), is due to the subleading terms of the metric as ρ → 0, in a way

similar to what happens in ref. [15] when unquenched flavors are added to the conifold

backgrounds. Notice that it is physically reasonable to expect that massless flavors alter

drastically the backreacted geometry in the deep IR. However, as our initial conditions are

such that the dilaton is finite at the origin, the value of the gtt component of the metric is

also bounded and then, according to the criterium of [29], the singularity is “good” and the

background can be used to extract non-perturbative information of the dual gauge theory.

As in subsection 4.2 we will also have backgrounds such that their metric asymptotes

in the UV to that of a G2 cone with constant dilaton. They will be briefly discussed in

subsection 5.2.

5.1 Asymptotic linear dilaton

As explained above, we are interested in solutions of the BPS equations such that asymp-

totically F is constant. Actually, by solving the BPS system in powers of 1/ρ, one can
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check that there are solutions in which F has the following asymptotic behavior:

F = Nc +
a1

ρ
+
a2

ρ2
+
a3

ρ3
+ · · · , (5.10)

where the coefficients a1, a2 and a3 are given by:

a1 = Nf Nc ,

a2 = −3

4
NcNf (Nc − 4Nf ) ,

a3 =
Nf Nc

16

[

21N2
c − 148Nf Nc + 240N2

f

]

. (5.11)

Notice that the first two terms in (5.10) and (5.11) coincide with the one written in (4.7)

for the truncated system. Similarly, the functions w and γ can be represented as:

w =
b1
ρ

+
b2
ρ2

+
b3
ρ3

+ · · · ,

γ =
c1
ρ

+
c2
ρ2

+
c3
ρ3

+ · · · , (5.12)

where the coefficients bi and ci are the following:

b1 = c1 =
1

2
(Nc − 3Nf ) ,

b2 = c2 =
5

8
(Nc − 3Nf ) (Nc − 2Nf ) ,

b3 =
1

32
(Nc − 3Nf )

[

49N2
c − 184NcNf + 204N2

f

]

,

c3 =
1

32
(Nc − 3Nf )

[

49N2
c − 208NfNc + 252N2

f

]

. (5.13)

By plugging the above series for F , w and γ in the equation for φ, one can also get the

UV behavior of the dilaton as a power series in 1/ρ. Actually, the first two terms in this

expansion are just the ones written in (4.8). For Nc > 2Nf this means that, asymptotically,

the dilaton grows linearly with the holographic coordinate ρ as:

φ ∼ ρ

2(Nc − 2Nf )
+ o(log ρ) , (ρ→ ∞) . (5.14)

In order to find numerically the solution for F , w and γ for the full range of the

holographic coordinate one has to match the IR regularity conditions (2.48), (2.46) and (5.9)

with the UV behavior (5.10)–(5.13). As mentioned above, the only free parameter is

F0 = F (ρ = 0). We have checked that such an interpolation between the ρ → 0 and

ρ→ ∞ behaviors is possible by solving the BPS system with the IR initial conditions and

by applying a shooting technique in which F0 is varied until we obtain a solution with

F (ρ) ≈ Nc for large ρ. This only happens when F0 is fine-tuned to a very precise value.

The result of this interpolation for Nc = 4, Nf = 1 is shown in figure 8. The plot of

F (ρ) in this figure should be compared with the one in figure 4, which corresponds to the
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Figure 8: On the left we plot F as a function of the holographic coordinate ρ for Nc = 4, Nf = 1.

On the right the full (dashed) line corresponds to the function w(γ) for the same values of Nc and

Nf .

truncated system. The main difference between the results for F (ρ) in these two figures

is that F (ρ) diverges for ρ → 0 in the truncated system, while it remains finite in the

complete solution, whereas for large ρ both solutions nearly coincide. Notice that w and

γ evolve smoothly from their initial values at ρ = 0 to their vanishing asymptotic values

for large ρ. The dilaton, which is not shown in figure 8, grows monotonically with ρ and

becomes approximately a linear function of the holographic coordinate when ρ is not very

small. These features are in agreement with the expectation that these solutions of the

complete system would reduce to the equivalent ones of the truncated ansatz in the UV.

Notice that in the borderline case Nc = 2Nf the initial value of γ is zero. The result of

our numerical calculation shows that, in this case, the function γ becomes negative for

ρ > 0 and approaches its asymptotic vanishing value for ρ → ∞ from negative values, in

agreement with expansion written in (5.12).

Having obtained this solution of the equations of motion of the gravity plus brane

system, let us see if it incorporates some of the features that the supergravity dual of 2+1

dimensional gauge theory plus flavors should exhibit. First of all, in the next subsection we

will give a prescription to evaluate the gauge coupling and we will verify that, for Nc ≥ 2Nf ,

this coupling displays the expected property of asymptotic freedom in the UV. Moreover,

in subsection 5.1.2 we will analyze the potential energy for an external quark-antiquark

pair and we will discover that this potential behaves in the way expected in a theory which

has string breaking due to pair production of dynamical massless quarks.

5.1.1 The Yang-Mills coupling and the beta function

Let us study the evolution of the gauge coupling constant with the holographic coordinate.

In order to do that, let us consider a D5-brane probe extended along the three Minkowski

directions and wrapping some internal three-cycle at a fixed value of the holographic co-

ordinate. The natural three-cycle to compute the Yang-Mills coupling is just the one used

above to fix the constant κ, namely Σ = {ωi = σi}. Indeed, as shown in section 2, Σ

shrinks to zero size at ρ → 0, which corresponds to the IR of the gauge theory where
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Figure 9: The inverse of the Yang-Mills coupling as a function of the holographic coordinate ρ for

the case Nc = 4, Nf = 1.

one expects to have a 2+1 dimensional behavior of the D5-brane probe. Thus, Σ is the

analogue in the present case of the two-cycle found in ref. [30] for the background dual to

N = 1 super Yang-Mills in four dimensions.

The DBI action for such a probe in the Einstein frame is:

SDBI = −TD5

∫

M6

e
φ
2

√

− det

(

Ĝ6 + e−
φ
2 F

)

, (5.15)

where Ĝ6 is the induced metric on the D5-brane worldvolume and F is the worldvolume

gauge field. By looking at the F2 terms in the above action, we get the value of the

Yang-Mills coupling constant of the dual 2+1 gauge theory, namely:

1

g2
YM

= e−
3

4
φ

∫

Σ

√

− det
(

Ĝ3

)

d3 ξ , (5.16)

where the induced metric Ĝ3 on the three-cycle Σ has been written in eq. (2.49) and we

have neglected all constant numerical factors. By using the metric written in (2.49), we

obtain:
1

g2
YM

=

[

ρ+
F

4
(1 − w)2

]
3

2

, (5.17)

where again we have neglected all numerical multiplicative constants. Due to our boundary

condition (2.46), the right-hand side of (5.17) vanishes for ρ = 0, which corresponds to

having g2
YM → ∞ in the IR, as expected in a confining theory. Clearly, 1/g2

YM grows

as we move towards the UV region ρ → ∞, in agreement with the expected property of

asymptotic freedom. In figure 9 we have plotted 1/g2
YM for Nc = 4 and Nf = 1. In order to

obtain the corresponding beta function from (5.17) we would need the relation between the

coordinate ρ and the energy scale of the problem. The usual arguments employed for the

gravity duals of four-dimensional N = 1 gauge theory are not valid in our three-dimensional

case and, as a consequence, such an energy-radius relation is lacking here. The best that

we can do is to use the original radial variable r which, as argued in subsection 4.1, grows

in all cases when we move towards the UV. This fact can be further verified by placing a
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fundamental string stretched along the radial direction and looking at its energy as given

by the Nambu-Goto action. Clearly this energy grows in the direction of increasing dilaton,

i.e. when r increases. When Nc ≥ 2Nf , large ρ corresponds to large r and, as F → Nc and

w → 0 for our solutions, one approximately has:

d

dr

(

1

g2
YM

)

≈ 3

2
ρ

1

2

dρ

dr
, (ρ→ ∞) . (5.18)

Moreover, when Nc > 2Nf we get from the asymptotic expansion (4.9):

dρ

dr
∼ 2(Nc − 2Nf )√

Nc
(ρ→ ∞) , (5.19)

and, thus, we can write for large r and ρ:

d

dr

(

1

g2
YM

)

∼ (Nc − 2Nf )√
Nc

ρ
1

2 ∼ (Nc − 2Nf )
3

2

(Nc)
3

4

r
1

2 (Nc > 2Nf ) (5.20)

eq. (5.20) shows that 1/g2
YM grows with r in the UV (as it is obvious from figure 9) and

that its derivative also grows with r as
√
r. This behavior is consistent with the expected

negative beta function for g2
YM. The form of eq. (5.20) could lead to the conclusion that its

right-hand side vanishes in the borderline case Nc = 2Nf . However, one should be careful

in this case and use the correct expression (4.14) in (5.18). One gets for large ρ:

d

dr

(

1

g2
YM

)

∼ 1

ρ
1

2

∼ 1

r
1

4

, (Nc = 2Nf ) , (5.21)

which shows that, actually, that the right-hand side only vanishes when r → ∞ and the

theory is still asymptotically free.

5.1.2 Wilson loops

In order to verify how the flavor degrees of freedom are encoded in our backreacted geom-

etry, let us study the rectangular Wilson loops for external, non-dynamical, heavy quarks.

These Wilson loops can be evaluated by studying the Nambu-Goto action of a fundamen-

tal string whose ends lie in the UV region r → ∞ and are separated by a distance L in

the gauge theory directions [31, 32](see also [33, 34]). To describe such configurations let

us choose the time t and a Minkowski coordinate x as worldvolume coordinates and let

us parameterize the string worldsheet by means of a function r = r(x), where r is the

holographic coordinate of (2.2). The induced metric in the string frame is:

eφ [−dt2 + (1 + (r ′)2 ) dx2 ] , (5.22)

and, as a consequence, the Nambu-Goto action takes the form:

S = −
∫

dtdx eφ(r)
√

1 + (r ′)2 , (5.23)
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Figure 10: In this figure we plot the energy E of the Wilson loop versus the length L. The curve

on the left corresponds to the case Nc = 4, Nf = 1. This curve clearly shows that there is a

maximal L and that E is a double-valued function of L. On the right we plot the same quantity

for the unflavored case with Nc = 4, where string breaking does not take place.

where we are taking the string tension to be equal to one and r ′ = dr/dx. From the

invariance of the lagrangian in (5.23) under shifts in the coordinate x, we immediately

obtain a first integral of the equations of motion of the string, namely:

eφ(r)

√

1 + (r ′)2
= eφ(rmin) , (5.24)

where rmin is the minimal value of the holographic coordinate reached by the string world-

sheet. From (5.24) we can straightforwardly obtain r ′, with the result:

r ′ = ±
√

e2φ(r) − e2φ(rmin)

eφ(rmin)
. (5.25)

It is now trivial to obtain the length L, i.e. the separation between the quark and the

antiquark, as a function of the minimal value of r:

L(rmin) = 2

∫ rmax

rmin

eφ(rmin)

√

e2φ(r) − e2φ(rmin)
dr , (5.26)

where rmax is a cutoff related to the mass of the external quarks, that can be taken to

be very large. Moreover, after subtracting the masses of the non-dynamical quarks, the

energy of the string configuration becomes:

E(rmin) = 2

∫ rmax

rmin

e2φ(r)

√

e2φ(r) − e2φ(rmin)
dr −

∫ rmax

0
e2φ(r) dr , (5.27)

which can be identified with the potential energy of a quark-antiquark pair separated by

a distance L(rmin). Notice that both E and L depend parametrically on rmin. By varying

rmin we can obtain the corresponding values of E and L and extract the dependence of

the energy on the distance. In a theory with dynamical quarks one expects the strings

to elongate until their tension equals the mass of the lightest meson and then create a

quark-antiquark pair and break. In an E versus L plot this behavior would correspond
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to having a maximal value of L and a double-valued function E(L). The corresponding

result for our solution when Nc = 4 and Nf = 1 are displayed in figure 10. We see that

the expected behavior of E(L) is reproduced, in a way similar to one found in ref. [8] for

the background dual to an N = 1 SQCD-like theory in 3+1 dimensions. To allow for a

comparison with the unflavored theory we have also plotted in figure 10 the result of the

E(L) curve for Nc = 4 and Nf = 0. In this unflavored case there is no maximal value of

L and, for large quark-antiquark separation, the energy grows linearly with L, as it should

for a confining theory without screening due to pair creation.

It is also possible to understand the different behaviors of the E(L) curves by analyzing

the function that is integrated on the right-hand side of (5.26). Indeed, one can check that

when r and rmin are both small, the square root on the denominator in (5.26) behaves as:

√

e2φ(r) − e2φ(rmin) ∼ rα , (r, rmin) → 0 , (5.28)

where α is some constant. In the unflavored case, by combining eq. (2.70) and the fact

that ρ ∼ r2 for small r, one concludes that α = 1, which in turn implies that the integral

giving L(rmin) is divergent when rmin → 0, in agreement with our numerical results. On

the contrary, when flavors are added we do not have an analytic IR expansion for the

untruncated system. In this case it is possible to verify numerically that α < 1, which

means that the integral (5.26) is now convergent when rmin → 0 and there is a maximal

value of L. This different behavior of the dilaton in these two cases is correlated with the

fact that the flavored metric develops a (good) curvature singularity at the origin, while

the unflavored solution is regular. It is worth pointing out that similar results have been

found in [8].

5.2 Asymptotic G2 cones

When F0 takes values in a certain range, the solutions of the BPS equations reached at the

UV have a metric which is the direct product of 2+1 dimensional Minkowski space and a G2

cone. The solutions in this case are very similar to the ones discussed in subsections 2.2.2

and 4.2 and we will not discuss them further here. Let us only mention that the asymptotic

values of F , w and γ for ρ → ∞ can be determined analytically, in a way completely

analogous to the one employed in subsection 2.2.2 (one has to take into account the different

value (5.7) of the constant κ in the present flavored case). One gets the following asymptotic

behavior:

F ≈ 4

3
ρ+ 4 (Nf −Nc) + · · · ,

w ≈ 3(Nc − 3Nf )

2ρ
+ · · · , (ρ→ ∞) ,

γ ≈ 1

3
− Nf

Nc
+ · · · , (5.29)

a result that is confirmed by our numerical calculation.
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Figure 11: The function F (ρ) for Nc = Nf = 1. To obtain this curve we have imposed the

behavior (5.10) for small r (or large ρ).

6. The general system with flavor (Nc < 2Nf)

In this section we briefly describe the solutions of the complete BPS system for Nc < 2Nf

that have an asymptotic linear dilaton in the UV. Even if the interpretation of these

solutions is less clear than in the Nc ≥ 2Nf case, it follows from the analysis performed

in subsection 4.1 for the truncated solutions that the right holographic variable is now the

original coordinate r, instead of the variable ρ used so far. Moreover, we learned in that

subsection that, in this Nc < 2Nf case, the small ρ region should be interpreted as the

UV of the gauge theory (with large r) and vice versa, the IR would correspond to large

ρ and small r. Somehow when going from Nc ≥ 2Nf to Nc < 2Nf the UV and IR are

exchanged. Thus, when Nc < 2Nf , it is natural to search for solutions that approach the

unflavored one at the IR2 where, in terms of the variable ρ, they can be represented by

the series (5.10) and (5.12). Notice that when one uses the variable r as the independent

variable one should also determine the function ρ(r) or, equivalently, h = h(r), where

h(r) is the function squashing the σi sphere in our ansatz (2.2). The differential equation

determining ρ(r) is just the one written in (2.42).

The numerical integration of the BPS system for Nc < 2Nf with the IR initial condi-

tions given by (5.10) and (5.12) shows that the function F decreases from its initial value

F ≈ Nc at r ≈ 0 until it vanishes at some finite value r∗ of the coordinate r. For larger

values of r the function F becomes negative and the solution does not make sense any

more. In figure 11 we plot F as a function of r for Nc = Nf = 1. Notice that F (r) drops

very fast to zero as r approaches its final value r∗. By choosing appropriately the initial

conditions in the integration of ρ(r) (or, equivalently, of h(r)) we can make that r = r∗
corresponds to ρ = 0. Moreover, the dilaton (not shown in figure 11) grows linearly with

r, as expected for this type of solutions. In these calculations we have taken the same

value (5.7) for the constant κ. Notice that, with our choice of initial conditions, the cycle

Σ collapses at r = r∗.

As argued in subsection 4.1 for the truncated system, we think that the proper interpre-

tation of the point r = r∗ is the location of a Landau pole. To confirm this interpretation

2This is actually what happens in other backreacted solutions with a Landau pole, such as the ones

in [15] for the conifold.
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we have calculated the Yang-Mills coupling, as given by (5.17), as a function of the ra-

dial variable r. The numerical results confirm that 1/g2
YM is a monotonically decreasing

function of r and that g2
YM → ∞ as we approach the point r = r∗.

7. Summary and discussion

In this paper we have found backgrounds which encode the effect of adding a large number

of unquenched flavors to the gravity dual of N = 1 gauge theories in 2+1 dimensions.

By using kappa symmetry, we first determined the appropriate embeddings of the flavor

branes that preserve the supersymmetries of the unflavored background and, then we found

the modification of the ansatz of the RR field needed to solve the Bianchi identity of the

coupled gravity plus branes system. We have subsequently obtained a system of first-

order BPS equations, which we have solved with different boundary conditions. The most

interesting solutions are those that contain a linear dilaton in the UV. When Nc ≥ 2Nf

we have argued that these solutions display the expected properties of a gravity dual of an

asymptotically free theory with dynamical quarks. We have checked this fact by computing,

from our background, the Yang-Mills coupling constant, as well as the expectation value of

the Wilson loop. In this latter case we have explicitly verified the expected string breaking

due to quark-antiquark pair production. We also found solutions for Nc < 2Nf and we

have shown that they are consistent with having a Landau pole in the UV of the gauge

theory.

Let us comment on some points that, in our opinion, would need some further clarifi-

cation. First of all, it would be desirable to have a more precise characterization of the field

theory dual to the background found here. One could argue as in [8] and try to determine

the IR field theory that is obtained by integrating out the massive KK fields. Following the

reasoning of [8] we conclude that extra couplings of the fundamental matter fields (quartic

or with higher powers) are generated. For this reason some of our results are difficult to

check on the field theory side.

One of the problems that would be interesting to understand from the field theory

point of view is the dependence of the beta function on Nc and Nf . Notice that, due

to the low amount of supersymmetry preserved by our solution, one cannot rely on the

power of holomorphy, which has been so useful to extract the non-perturbative structure

of N = 1 gauge theories in four dimensions. In a certain sense these theories are a good

arena to test the power of holography as a tool to explore the strong coupling regime of

gauge theories. As a first step in this direction, let us try to determine the coefficient k

of the Chern-Simons term for our solution. In general, to obtain such a result one should

be able to find the shift of the level due to the integration out of the KK fermions. In the

presence of massless flavors this calculation is even more complicated because an explicit

computation of the Witten index is, at least to our knowledge, lacking. However, the form

of the supergravity solution that we find seems to suggest that the Chern-Simons level k

of the low-energy three dimensional theory, after having integrated out the KK fermions,

is:

k =
Nc − 3Nf

2
. (7.1)
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This would imply the Witten index for such theory would be:

I(n) =
(Nc + n)!

n!Nc!
(7.2)

with n = k − (Nc − 3Nf )/2 ≥ 0, and being 0 otherwise. It would be very interesting to

prove or disprove these results from a direct calculation in the field theory.

Let us finish this section by mentioning some further topics that one could address

from the supergravity side. First of all, one could try to generalize our background to the

case in which the flavors are massive. For the case of the conifold this generalization was

achieved in [15] by a simple modification of the RR form whose Bianchi identity is violated.

One could try to apply a similar procedure for the setup studied here. The analysis of the

meson spectra for the backreacted geometry is clearly another interesting problem to look

at. To perform this analysis one can add a probe and consider its fluctuations. Presumably

one would find the same type of problems related to the normalizability of the fluctuation

modes as in other backgrounds generated by D5-branes and a careful treatment would

be needed to extract the meson masses. The construction of the black hole version of our

background is clearly of great interest since it would allow us to explore the thermodynamic

and hydrodynamic properties of the field theory dual at finite temperature.

For the metrics with G2 holonomy one can perform the so-called flop transformation,

in which the two three-spheres are exchanged. An interesting problem to study is to what

extent this transformation can also be performed in our solutions and what are the effects

on the field theory side (see [35] for a similar study in the case of backgrounds of G2

holonomy without fluxes). According to the ideas put forward in [8], one expects that this

discrete transformation is a kind of Seiberg duality, that somehow would exchange the rank

and the level of the corresponding field theory. Finally, one could try to see if our family

of unflavored backgrounds can be used to describe the physics of domain walls in N = 1

gauge theories in four dimensions.
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A. Derivation of the BPS equations

The supersymmetry transformations for the type IIB dilatino λ and gravitino Ψµ in Einstein

frame, when the RR three-form is nonzero, are:

δλ =
i

2
∂µ φΓµ ǫ∗ +

1

24
e

φ
2 F (3)

µ1µ2µ3
Γµ1µ2µ3 ǫ ,

δΨµ = Dµǫ+
i

96
e

φ
2 F (3)

µ1µ2µ3

(

Γ µ1µ2µ3

µ − 9 δµ1

µ Γµ2µ3

)

ǫ∗ . (A.1)
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We want to solve the conditions δλ = δψµ = 0 for a metric given by our ansatz (2.2). In

what follows we shall choose the following vierbein basis:

ex
i

= ef dxi , er = ef dr ,

ei = ef+h σ
i

2
,

eî = ef+g

(

ωi −Ai

2

)

, (A.2)

where Ai is parameterized in terms of the function w(r) as in (2.3). The spin connection

in the basis (A.2) is given by:

ωx
ir = e−f f ′ ex

i

,

ωir = e−f (f ′ + h′) ei − w′

4
e−f+g−h eî ,

ωîr = e−f (f ′ + g′) eî − w′

4
e−f+g−h ei ,

ωij = −ǫijk
[

e−f−h ek +
1 − w2

4
e−f+g−2h ek̂

]

,

ωîĵ = −ǫijk
[

e−f−g ek̂ + (1 + w) e−f−h ek
]

,

ωiĵ =
1 − w2

4
ǫijk e−f+g−2h ek − w′

4
e−f+g−h δij e

r ,

ωîj =
1 − w2

4
ǫijk e−f+g−2h ek +

w′

4
e−f+g−h δij e

r . (A.3)

We will take the RR three-form F3 that corresponds to the general system with flavor

of the main text, i.e. we will take F3 as given by (3.39). The different components of this

field strength in the basis (A.2) are:

F
(3)

rîi
=
Nc

2
γ′e−3f−g−h ,

F
(3)

1̂2̂3̂
= −2Nce

−3f−3g ,

F
(3)

îjk
= −ǫijk

2
Nc

(

1 − 4Nf

Nc
+ w2 − 2wγ

)

e−3f−g−2h ,

F
(3)

îĵk
= −ǫijkNc(w − γ)e−3f−2g−h ,

F
(3)
123 =

Nc V

4
e−3f−3h , (A.4)

where V is a function of r defined as:

V = (w − 3γ) (1 − w2) − 4

(

1 − 3Nf

Nc

)

w + 8κ , (A.5)

with κ being the same constant as in (2.11).

The Killing spinors of the background are those ǫ for which the right-hand side of

eq. (A.1) vanishes. In order to satisfy the equations δλ = δΨµ = 0 we will have to impose
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certain projection conditions on ǫ. These conditions are:

Γ11̂ ǫ = Γ22̂ ǫ = Γ33̂ǫ, iǫ⋆ = ǫ . (A.6)

Let us now define the following matrix

Γ∗ ≡ Γr1̂2̂3̂ . (A.7)

From the vanishing of the dilatino variation under SUSY, we get:

φ′ǫ−Nc

[

e−3g − 3

4

(

1 − 4Nf

Nc
+ w2 − 2wγ

)

e−g−2h

]

Γ∗ǫ+
3

4
Nc e

−g−h γ′ Γ11̂ ǫ −

−Nc

2

[

V

4
e−3h + 3(w − γ) e

φ
2
−2f−2g−h

]

Γ11̂ Γ∗ǫ = 0 . (A.8)

Let us now consider the gravitino variation. From the condition δψxi = 0 we obtain that

the metric function f must be related to the dilaton as:

f =
φ

4
. (A.9)

Moreover, from the equation δψi = 0, after using eqs. (A.8) and (A.9), one arrives at:

h′ǫ− e−2h

2

[

(1 − w2) eg +Nc

(

1 − 4Nf

Nc
+ w2 − 2wγ

)

e−g
]

Γ∗ǫ−

− eg−h

4

[

w′ +Nc e
−2g γ′

]

Γ11̂ ǫ+

+
1

2

[

Nc

4
V e−3h +Nc (w − γ)e−2g−h − 2w e−h

]

Γ11̂ Γ∗ ǫ = 0 . (A.10)

Similarly, the condition δψî = 0 leads to:

g′ǫ+
1

4

[

(1 − w2)e−2h+g − 4e−g −Nc

((

1 − 4Nf

Nc
+ w2 − 2wγ

)

e−g−2h − 4e−3g

)]

Γ∗ǫ+

+
eg−h

4

[

w′ −Nc e
−2g γ′

]

Γ11̂ ǫ+Nc (w − γ) e−2g−h Γ11̂ Γ∗ ǫ = 0 . (A.11)

In order to solve the above equations, we shall impose the additional projection:

Γ∗ǫ = (β + β̃Γ11̂)ǫ , (A.12)

where β and β̃ are functions of the radial variable to be determined. As (Γ∗)
2 = 1 and

{Γ∗,Γ11̂} = 0, by consistency, these quantities must satisfy the condition:

β2 + β̃2 = 1 , (A.13)

and, therefore, they can be represented in terms of a single angle α as:

β = cosα , β̃ = sinα . (A.14)
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Notice that the projection (A.12) is equivalent to

Γ11̂ Γ∗ ǫ = (βΓ11̂ − β̃) ǫ , (A.15)

and can be solved as:

ǫ = e−
α
2
Γ

11̂ ǫ0 , (A.16)

where α and the spinor ǫ0 depend on r and the latter satisfies the projection:

Γ∗ ǫ0 = ǫ0. (A.17)

We can now write the set of BPS equations corresponding to this ansatz. Let us

substitute (A.12) and (A.15) in the dilatino variation (A.8). By separating the terms

containing the unit matrix from those with Γ11̂, and using φ = 4f , we arrive at the

following equations:

f ′ =
Nc

4

[

e−3g − 3

4

(

1 − 4Nf

Nc
+ w2 − 2wγ

)

e−g−2h

]

β − Nc

8

[

V

4
e−3h + 3(w − γ)e−2g−h

]

β̃,

γ′ =
4

3

[

e−2g+h − 3

4

(

1− 4Nf

Nc
+w2−2wγ

)

e−h
]

β̃+
2

3

[

V

4
e−2h+g+3(w−γ)e−g

]

β. (A.18)

In order to determine β and β̃, let us plug (A.12) and (A.15) in (A.10) and consider the

terms containing Γ11̂. One gets:

eg−hw′ +Nce
−g−hγ′ =

[

Nc

2
V e−3h + 2Nc(w − γ)e−2g−h − 4we−h

]

β + (A.19)

+ 2

[

(w2 − 1) eg−2h −Nc

(

1 − 4Nf

Nc
+ w2 − 2wγ

)

e−g−2h

]

β̃.

Similarly, from (A.11) one arrives at:

eg−hw′ −Nc e
−g−h γ′ = −4Nc(w − γ) e−2g−h β − (A.20)

−
[

(1−w2)eg−2h−4e−g+4Nce
−3g−Nc

(

1− 4Nf

Nc
+w2−2wγ

)

e−g−2h

]

β̃.

By substituting the expression of γ′ taken from (A.18) into (A.19), one gets the following

expression of w′:

eg−hw′ =

[

Nc

3
V e−3h − 4we−h

]

β − (A.21)

−
[

2(1 − w2) eg−2h +
4

3
Nce

−3g +Nc

(

1 − 4Nf

Nc
+ w2 − 2wγ

)

e−g−2h

]

β̃ ,

whereas, by performing a similar manipulation to (A.20), one can prove that:

eg−hw′ = Nc

[

V

6
e−3h − 2(w − γ) e−2g−h

]

β +

+

[

4e−g − 8

3
Nc e

−3g − (1 − w2) eg−2h

]

β̃ . (A.22)
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By eliminating w′ in (A.21) and (A.22), one can demonstrate that β and β̃ satisfy a relation

of the form:

Λ̃β − Λβ̃ = 0 , (A.23)

where the functions Λ and Λ̃ are given by:

Λ = e2h +
1 − w2

4
e2g +

Nc

4

(

1 − 4Nf

Nc
+w2 − 2wγ

)

− Nc

3
e2h−2g ,

Λ̃ =
NcV

24
eg−h − weg+h +

Nc

2
(w − γ) e−g+h . (A.24)

One can solve (A.23) for β and β̃ as β ∝ Λ, β̃ ∝ Λ̃, where the common proportionality

function is determined by imposing the condition β2 + β̃2 = sin2 α + cos2 α = 1 (see

eq. (A.13)). One gets:

β =
Λ

√

Λ2 + Λ̃2
, β̃ =

Λ̃
√

Λ2 + Λ̃2
. (A.25)

Let us now rewrite (A.22) as:

w′ = Nc

[

V

6
e−g−2h − 2(w − γ)e−3g

]

β +

+

[

4e−2g+h − 8

3
Nc e

−4g+h − (1 − w2) e−h
]

β̃ . (A.26)

Up to now we have determined the first-order BPS equations satisfied by f , γ and w

(eqs. (A.18) and (A.26)). Let us now determine the equations for the remaining functions

of our ansatz, namely h and g. By using (A.12) and (A.15) in (A.10) and considering the

terms containing the unit matrix , we get:

h′ =
1

2

[

(1 − w2)eg−2h +Nc

(

1 − 4Nf

Nc
+ w2 − 2wγ

)

e−g−2h

]

β +

+
1

2

[

Nc

4
V e−3h +Nc (w − γ)e−2g−h − 2we−h

]

β̃ . (A.27)

Similarly, from (A.11) we obtain the following equation for h:

g′ =
1

4

[

4e−g − (1 −w2)eg−2h +Nc

(

1 − 4
Nf

Nc
+ w2 − 2wγ

)

e−g−2h − 4Nc e
−3g

]

β +

+Nc (w − γ)e−2g−h β̃. (A.28)

To complete our analysis of the Killing spinor equations we should check that the

variation of the radial component of the gravitino vanishes. Actually, one can check that

this condition holds if the following two equations are satisfied:

α′ = −3

4
Ncγ

′e−g−h − 3

4
w′eg−h , (A.29)

ǫ′0 =
φ′

8
ǫ0 , (A.30)
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where α is related to β and β̃ as in (A.14). By using (A.25) one can check, nontrivially,

that eq. (A.29) is a consequence of the other first-order equations of the system. More-

over, (A.30) determines the dependence of ǫ0 on the radial coordinate. Indeed, it can be

integrated as:

ǫ0 = e
φ
8 η , (A.31)

where η is a constant spinor. By combining eqs. (A.31) and (A.16), one can get the explicit

expression of the Killing spinors, namely:

ǫ = e−
α
2
Γ

11̂ e
φ
8 η , (A.32)

with η being a constant spinor satisfying the four commuting projections:

Γ11̂ η = Γ22̂ η = Γ33̂ η,

iη⋆ = η ,

Γ∗ η = η . (A.33)

The projections (A.33) show that our background is 1/16 supersymmetric, i.e. it preserves

two supersymmetries. Notice that this is the amount of supersymmetry expected for an

N = 1 theory in 2+1 dimensions.

To finish this appendix, let us point out that the BPS equations just found are consis-

tent with the truncation w = γ = κ = 0 (which implies that V = 0). It is clear from (A.29)

that in this case the phase α can be taken to vanish or, equivalently, β = 1 and β̃ = 0. The

corresponding truncated equations are much simpler than the full BPS system and will be

studied separately in the main text.

B. Equations of motion

The equation of motion for the dilaton derived from the action (3.32) is:

1√
−G

∂M

(

GMN
√
−G∂N φ

)

− 1

12
eφF 2

3 = − 2κ2
10√
−G

δ

δφ
Sflavor . (B.1)

In order to make this equation more explicit, let us compute the determinant of the metric

for our ansatz. The easiest way to do that is by realizing that
√
−G can be obtained by

computing the wedge product of all the one-forms of the frame basis:

ex
0 ∧ · · · ∧ e3̂ =

√
−G dx0 ∧ · · · dx9 . (B.2)

In our case, we get: √
−G =

1

64
e

5φ
2

+3(h+g)
√

g̃1
√

g̃2 , (B.3)

where g̃1 and g̃2 are angular factors that depend on the parametrization of the two sets of

left-invariant SU(2) one-forms. Actually, let us suppose that we represent the σi’s (ωi’s)

in terms of the three angles θ1, φ1 and ψ1 (θ2, φ2 and ψ2). Then:

σ1 ∧ σ2 ∧ σ3 =
√

g̃1 dθ1 ∧ dφ1 ∧ dψ1 , ω1 ∧ ω2 ∧ ω3 =
√

g̃2 dθ2 ∧ dφ2 ∧ dψ2 . (B.4)
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For the standard election of the angular variables, one can verify that:
√

g̃i = sin θi , (i = 1, 2) . (B.5)

Using these results one can verify that the equation of motion for the dilaton (B.1) reduces

to:

φ′′ + 2

(

φ′ + 3(h′ + g′)

)

φ′ − e
3φ
2

12
F 2

3 = − 2κ2
10√
−G e

φ
2

δ

δφ
Sflavor . (B.6)

We shall evaluate the first two terms on the left-hand side of the above equation by using

the BPS equations for the functions of the ansatz and the dilaton. Notice that, in order

to compute the second derivative of the dilaton, we must differentiate its BPS equation.

After this differentiation we need to evaluate the derivatives of β and β̃. Taking into

account (A.14), one gets:

β′ = −β̃α′ , β̃′ = βα′ , (B.7)

and, after using the value of α′ from (A.29), one obtains:

β′ =
3

4

[

Ncγ
′e−g−h +

3

4
w′eg−h

]

β̃ ,

β̃′ = −3

4

[

Ncγ
′e−g−h +

3

4
w′eg−h

]

β . (B.8)

Moreover, from our ansatz the term containing the RR three-form F3 in the equation of

motion of the dilaton is:

e
3φ
2

12
F 2

3 =
3

8
N2
c (γ′)2 e−2g−2h + 2N2

c e
−6g +

3

8
N2
c

[

1 − 4Nf

Nc
+ w2 − 2wγ

]2

e−2g−4h +

+
3

2
N2
c (w − γ)2 e−4g−2h +

N2
c

32
V 2 e−6h . (B.9)

Amazingly, after a very long calculation one gets the simple result:

φ′′ + 2

(

φ′ + 3(h′ + g′)

)

φ′ − e
3φ
2

12
F 2

3 = 6Nf e
−2h−2g . (B.10)

In order to verify that the right-hand side of (B.6) reproduces exactly this result, let us

use the action of the smeared flavor branes in terms of the charge distribution four-form

Ω. From the expression of this action it is straightforward to evaluate its contribution to

the equation of motion of the dilaton:

− 2κ2
10√
−G e

φ
2

δ

δφ
Sflavor = 2π2 eφ

∑

i

∣

∣

∣

∣

Ω(i)

∣

∣

∣

∣

= 6Nf e
−2h−2g , (B.11)

which proves that, indeed, the equation of motion of the dilaton is satisfied.

Let us next verify that the Einstein equations are satisfied. These equations are:

RMN − 1

2
GMNR =

1

2

(

∂Mφ∂Nφ− 1

2
GMN∂Pφ∂

Pφ

)

+

+
1

12
eφ

(

3F
(3)
MPQF

(3)PQ
N − 1

2
GMNF

2
(3)

)

+ TMN , (B.12)
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where TMN is the DBI contribution to the energy-momentum tensor, namely:

TMN = − 2κ2
10√
−G

δSDBI
δGMN

. (B.13)

Taking into account that the absolute value of the smearing form Ω is defined in (3.27),

we can simply compute the DBI contribution to the energy-momentum tensor, in flat

components:

TM̂N̂ = −2π2 eφ/2

[

ηM̂N̂

3
∑

i

| Ω(i) | −
3

∑

i

1

3! | Ω(i) |(Ω
(i))M̂P̂ Q̂R̂(Ω(i))N̂ŜT̂ Ûη

P̂ ŜηQ̂T̂ ηR̂Û

]

.

(B.14)

In components, it means that

Txµxν = Trr = −6Nf e
−2f−2h−2g ,

Tii = Tî̂i = −2Nf e
−2f−2h−2g , (B.15)

with the off-diagonal components being zero.

Moreover, from the value of the spin connection we can easily compute the different

components of the Ricci tensor. In flat indices these components are the following:

Rxµxν = −ηxµxνe−2f
[

f ′′ + 8(f ′)2 + 3f ′h′ + 3f ′g′
]

,

Rrr = −3e−2f

[

3f ′′ + h′′ + g′′ + h′(f ′ + h′) + g′(f ′ + g′) +
1

8
e2g−2h(w′)2

]

,

Rii = −e−2f

[

f ′′ + h′′ + 8(f ′)2 + 3(h′)2 + 11f ′h′ + 3f ′g′ + 3h′g′ +

+e2g−4h (1 −w2)2

4
+ e2g−2h (w′)2

8
− 2e−2h

]

,

Rîi = e−2f+g−h

[

w′′

4
+ 2w′f ′ +

5

4
w′g′ +

1

4
w′h′ + e−2hw(1 − w2)

2

]

,

Rî̂i = −e−2f

[

f ′′ + g′′ + 8(f ′)2 + 3(g′)2 + 11f ′g′ + 3f ′h′ + 3h′g′ −

−e2g−4h (1 −w2)2

8
− e2g−2h (w′)2

8
− 2e−2g

]

, (B.16)

with the remaining components zero. It is straightforward to calculate now the curvature

scalar in Einstein frame:

R = −e−2f

[

18f ′′ + 6h′′ + 6g′′ + 72(f ′)2 + 12(h′)2 + 12(g′)2 + 54f ′h′ + 54f ′g′ + 18h′g′ +

+
3

8
e2g−2h(w′)2 +

3

8
e2g−4h(1 − w2)2 − 6e−2h − 6e−2g

]

. (B.17)

Finally, one can verify that the BPS equations we have found imply the fulfillment of

eq. (B.12) along its different components.
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Finally, it remains to verify the equation of motion for the RR three-form F3, which

is just:

d
(

eφ ∗F3

)

= 0 . (B.18)

After computing the Hodge dual of F3 with the metric (2.2), one can demonstrate

that (B.18) is equivalent to the following second-order differential equation for the functions

of our ansatz:

eh+g
[

γ′′ + (2φ′ + h′ + g′)γ′
]

+ 4 eh−g
(

w − γ
)

+
e3(g−h)

4

(

1 − w2
)

V +

+2 eg−h
(

1 − 4Nf

Nc
+w2 − 2w γ

)

w = 0 , (B.19)

which, again, can be shown to be a consequence of our first-order BPS equations.
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